Page 199 - Mechanics of Asphalt Microstructure and Micromechanics
P. 199

Fundamentals of Phenomenological Models   191


                 A) The equilibrium equations:
                                            (,
                                          ∂σ xt)
                                            ij
                                                   (,
                                                + Fx t)  = 0                    (6-127)
                                            ∂x     j
                                             i
                 B) The time-dependent constitutive equations:
                                               t
                                        st () = 2 ∫ G t ( − ξ d ) ( )ξ dξ
                                         ij           ij
                                               0                                (6-128)
                                               t
                                        σ  t () = 3 ∫ K t ( −ξ )ε ξ ξ d()
                                         ii           ii
                                               0
                 C) The strain-displacement relations (small strain):
                                        ε t() =  1  [ ∂ ut()  +  ∂ ut() ]       (6-129)
                                                        j
                                                  i
                                         ij   2   x ∂   x ∂
                                                   j     i
                 D) The compatibility relations:
                                                        2
                                         2
                                            t
                                        ∂ ε ()  ∂ ε ()  ∂ ε ()
                                                            t
                                                2
                                                    t
                                      2   xy  =   xx  +   yy                    (6-130)
                                         ∂∂xy    ∂y 2    ∂x 2

                 E) Boundary conditions:
                                           Tx t) = σ  (,
                                            (,
                                                    x t n )
                                            j      ij   i
                                           Ux t) =  u x t)                      (6-131)
                                                    (,
                                             (,
                                            j      j
                 A solution using the elastic-viscoelastic correspondence principle applies the La-
              place transform to the above equations and obtains a set of equations in the transformed
              space.
                      σ
                     ∂ ˆ (, )
                        xs
                              ˆ
                             Fx
                 A)    ij   + (, ) s  = 0                                       (6-132)
                       ∂x     j
                         i
                     ˆ       ˆ  ˆ
                                  s
                      ()
                 B)  Ss = 2 sG () ()
                              s
                                d
                      ij        ij
                     σ      sK ˆ ˆ () s                                         (6-133)
                              ε
                     ˆ () s = 3
                      ii       ij
                                    ˆ ()
                           1  ∂ us  ∂ us
                              ˆ ()
                 C)  ε s =  [  i  +    ]                                        (6-134)
                                     j
                     ˆ ()
                      ij
                          2   x ∂    x ∂
                               j      i
                        ε
                                        ε
                                ε
                                       2
                       2
                               2
                      ∂ ˆ ()  ∂ ˆ ()  ∂ ˆ () s
                           s
                                   s
                 D)  2   xy  =   xx  +   yy                                     (6-135)
                       ∂∂xy     ∂y 2    ∂x  2
                      (, ) = σ
                     ˆ
                 E)  Tx  s  ˆ (, )x s n i
                      j
                             ij
                     ˆ
                       (, ) =
                             ˆ (, )x s
                     Ux  s  u                                                   (6-136)
                      j      ij
                 By comparing this set of equations with the equations in small-strain linear elastic-
                                                               ˆ
                                                    ˆ
              ity, one can notice that if G is replaced with sG(s)K, with 3sK the set of equations is the
              same as the set of equations in elasticity. This will allow one to solve the viscoelasticity
   194   195   196   197   198   199   200   201   202   203   204