Page 18 - Modelling in Transport Phenomena A Conceptual Approach
P. 18

CONTENTS                                                             xv


           A  Mat hematical Preliminaries                                      491
              A.l  THE CYLINDRICAL AND SPHERICAL
                   COORDINATE SYSTEMS  .......................                 491
              A.2  MEAN VALUE THEOREM .......................                  493
              A.3  SLOPES ON LOG-LOG  AND SEMI-LOG
                   GRAPH PAPERS  ............................                  494
              A.4  LEIBNITZ’S RULE FOR DIFFERENTIATION OF INTEGRALS  . 495
              A.5  NUMERICAL DIFFERENTIATION  .................. 495
                   A.5.1  Douglass-Avakian Method  ....................  496
                   A.5.2  Whitaker-Pigford Method  ....................  496
              A.6  REGRESSION AND CORRELATION ................. 500
                   A.6.1  Simple Linear Regression  ....................  500
                   A.6.2  Sum of  Squared Deviations  ................... 500
                   A.6.3  The Method of  Least Squares  .................. 501
                   A.6.4  Correlation Coefficient  ......................      505
              A.7  THE ROOT OF AN EQUATION  ................... 506
                   A.7.1  Roots of  a Polynomial  ......................  506
                   A.7.2  Numerical Methods  .......................  510
              A.8  METHODS OF INTEGRATION  ....................  512
                   A.8.1  Mean Value Theorem  ......................  512
                   A.8.2  Graphical Integration  ......................  514
                   A.8.3  Numerical Integration or Quadrature .............. 514
                   A.8.4  Numerical Integration When the Integrand is a
                         Continuous Function  .......................  518
              A.9  MATRICES ................................  522
                   A.9.1  Fundamental Algebraic Operations  ............... 523
                   A.9.2  Determinants  ...........................            525
                   A.9.3  Types of  Matrices  ........................         527
                   A.9.4  Solution of  Simultaneous Algebraic Equations  ......... 528

           B  Solutions of  Differential Equations                             531
              B.l  FIRST-ORDER EQUATIONS WITH EXACT SOLUTIONS  .... 531
                   B.l.l  Separable Equations  .......................  532
                   B.1.2  Exact Equations  .........................  532
                   B  . 1.3  Homogeneous Equations  .....................  534
                   B.1.4  Linear Equations  .........................  535
                   B.1.5  Bernoulli Equations  .......................         536
              B.2  SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS  .... 537
                   B.2.1  Special Case of  a Second-Order Equation  ........... 538
                   B.2.2  Solution of  a Non-Homogenous Differential
                         Equation  .............................               538
                   B.2.3  Bessel’s Equation  .........................  539
                   B.2.4  Numerical Solution of  Initial Value Problems  ......... 544
                   B.2.5  Solution of  Simultaneous Differential Equations  ........ 548
   13   14   15   16   17   18   19   20   21   22   23