Page 217 - Modelling in Transport Phenomena A Conceptual Approach
P. 217

7.4.  CONSERVATION OF MOMENTUM                                      197

           where

                                                             0.31 Re;
            I = LRe” (1.067 x lo6 - 18 Rep -3.114Reg657 -                )  d Rep
                                                        1 + 16,300 Re;’.’’
            The value of I  can be determined by using one of the numerical techniques given in
           Section A.8-4  in Appendix A. The use of  the Gauss-Legendre quadrature is shown
           below.  According to Eq.  (A.8-13)

                                             1021
                                      Rep = - + 1)
                                                 (u
                                              2
           and  the five-point quadrature is given by






           where the function F(u) is given by
                                                  1
            F(u) =
                                                                 80,789 (u + 1)2
                    1.067 x lo6 - 9189 (U + 1) - 95602 (U + l)1.657  -   + 18.22 (u + 1)-l.09


            The values of  wi  and  F(ui) are given up to three decimals in the following table:

             i    Ui      wi    qui) x 106   WiF(Ui) x 106
            0     0.000  0.569     1.044        0.594
             1  +0.538  0.479      1.187        0.569
             2  -0.538  0.479      0.966        0.463
             3  +0.906  0.237      1.348        0.319
            4  -0.906  0.237       0.940        0.223




            Therefore, the value of I  can be calculated from Eq.  (2) as

                              I=- lo2’  (2.17 x 10-6)  = 1.11 x 10-3
                                    2

           Substitution of  this value into Eq.  (1) gives
                              (11,307)(1.5  x 10-3)2 (1.11 x
                          t=                                 = 1.44s
                                        19.57 x
   212   213   214   215   216   217   218   219   220   221   222