Page 236 - Modelling in Transport Phenomena A Conceptual Approach
P. 236

216         CHAPTER  7.  UNSTEADY-STATE MACROSCOPIC BALANCES



            Analysis
             The mass flow rate of air, ma, is calculated from Eq.  (7.6-2)  as

                               mrn { ~p,,, [(Trn)i, - T~I i}
                                                    +





             The use of  Eq.  (7.63) gives the tower diameter as





                                           (4)(73,028)   = 3.3m
                                         r( 1.2) (2) (3600)

             The use of Eq.  (4.3-6) gives the Archimedes  number as

                               D;gPa(Prn  - Pa)
                         Ar=
                                     P2
                            - (2 x 10-3)3(9.8)(1.2)(1700 - 1.2) = 4.97
                            -                                       105
                                       (17.93 x 10-6)2
             Hence, the Reynolds  number and  the relative velocity  are
                             Ar
                      Rep = - [1+ 0.0579 Ar0.412] -le214
                             18
                          -
                          - 4'97  lo5 [1+ 0.0579 (4.97 x 105)0.412]-'214 = 1134
                                18




                                   - (17.93 x 10-6)(1134)
                                   -                    = 8.5m/s
                                        (1.2)(2 x 10-3)
             Therefore,  the terminal  velocity of the particle is
                                  vt = v, - va = 8.5 - 2 = 6.5m/s

             The we of the  Whitaker correlation,  Eq.  (7.6-11), with pao/pw M  1, gives
                       Nu = 2 + (0.4Rei12 +0.06 ReZ3)     (p,/pw)'14

                          = 2 + [0.4 (1134)'12 + 0.06 (1134)~/~] (0.714)0.4 = 19.5
   231   232   233   234   235   236   237   238   239   240   241