Page 369 - Modelling in Transport Phenomena A Conceptual Approach
P. 369

9.2.  ENERGY TRANSPORT WITHOUT CONVECTION                           349

           W  Case (ii) k = constant; R = constant

           In this case Eq.  (9.2-30) reduces to
             T=Tz+S b-(&)2]

                       4k


                                                                 1n(r'R2)
                                                  [1- ( $!-)2]}   ln(R1IR2)  (9.232)

           The location of maximum temperature can be obtained from dT/dr = 0 as










           Type I1 boundary condition

           The solution of  Eq.  (9.2-28) subject to the boundary conditions
                                                    dT
                                  at  r=R1      -k-=     41
                                                    dz                     (9.2-34)
                                  at  r=R2      T=T2

           is given by
             STT  k(T)dT = I"'  [iF?J?(u)udu] dr



                                          + [Jo"; W(u) udu - q~Rl] In (e) (9.2-35)


           Note that when R = 0, Eq.  (9.2-35) reduces to Eq.  (C) in Table 8.4.

           W  Case (i) k = constant

           In this case Eq.  (9.2-35) reduces to
              k (T - T2) = 1"' f [1'R(u)udu]  dr + [iR' WU)~ - qiRi]  (&)
                                                             du
                                                                            (9.2-36)
           When $2  = 0, Eq.  (9.236) simplifies to Eq.  (D) in Table 8.4.
   364   365   366   367   368   369   370   371   372   373   374