Page 390 - Modelling in Transport Phenomena A Conceptual Approach
P. 390

370       CHAPTER 9.  STEADY MICROSCOPIC BALANCES WITH GEN.

            The use of  Eq.  (9.3-55) in Eq.  (9.3-53) yields
                                       dT  4h(Tw-T)
                                       -- -                                 (9.3-56)
                                       aZ     D(VZ)PCP
            Substitution of  Eq.  (9.3-56) into Eq.  (9.3-39) gives




            In terms of  the dimensionless variables defined by Eqs.  (9.3-44) and (9.3-45), Eq.
            (9.3-57) becomes

                                                                            (9.3-58)
            The boundary conditions associated with Eq.  (9.3-58) are

                                                                            (9.3-59)


                                       at  <=1     8=1                      (9.3-60)
            Note that the use of  the substitution
                                           u=i-e                            (9.3-61)
            reduces Eqs.  (9.3-58)-(9.3-61) to

                                                  <4 z
                                 -2N~(l--<~)u=--  (IdU)                     (9.3-62)
                                                   d< -'
                                                   du
                                      at  5=0     --                        (9.3-63)
                                       at  <=1  u=O                         (9.3-64)
            Equation (9.3-62) can be solved for Nu  by the method of  Stodola and Vianello as
            explained in Section B.3.4.1 in Appendix B.
               A reasonable first guess for u which satisfies the boundary conditions is

                                          u1=l-E 2
                                                                            (9.3-65)
            Substitution of  Eq.  (9.3-65) into the left-side of Eq.  (9.3-62) gives

                                f 62) =-2Nu(E-2t3+t5)                       (9.3-66)

            The solution of  Eq. (9.3-66) is

                                       (11 - 18t2 +9J4 - 2E6
                                U=NU                                        (9.3-67)
                                                  36
                                                 f 1 (E)
   385   386   387   388   389   390   391   392   393   394   395