Page 15 - Book Hosokawa Nanoparticle Technology Handbook
P. 15
xiv TABLE OF CONTENTS
5.2.3 Neutron diffraction 274 5.4.3 Capillary condensation phenomenon and
5.2.4 Raman scattering 277 PSD analysis 299
5.3 Surface structure 279 5.4.4 Other methods of interest 302
5.3.1 AFM 279 5.5 Grain boundaries and interfaces 303
5.3.2 STM 284 5.5.1 The role of TEM 303
5.3.3 FT-IR 287 5.5.2 Analytical TEM (AEM) 306
5.3.4 XPS 290 5.5.3 Three-dimensional electron tomography
5.3.5 Wettability 294 (3D-ET) 310
5.4 Nanopore characterization 297 5.6 Evaluation methods for oxide
5.4.1 Type of nitrogen isotherms heterostructures 312
and pore characteristics implied 298
5.4.2 Micropore filling phenomenon and
PSD analysis 298
Chapter 6 Evaluation methods for properties of nanostructured body
6.1 Functionality of nanostructures and their 6.3.4 Nanosecond thermoreflectance
characteristic evaluation 319 method 341
6.1.1 What are nanostructures? 319 6.3.5 Thin film thermophysical
6.1.2 Examples showing how the property reference material and
functions of nanostructures are traceability 341
performed 320 6.3.6 Summary 342
6.1.3 Functionality and characteristic 6.4 Electric properties 344
evaluation 322 6.4.1 Dielectric properties 344
6.2 Mechanical properties 324 6.4.2 Electrical conduction properties 349
6.2.1 Strength, fracture toughness and 6.4.3 Thermoelectric properties 354
fatigue behavior 324 6.5 Electrochemical properties 358
6.2.2 Elastic constants: hardness 326 6.5.1 Electrode reaction 358
6.2.3 Creep/superplasticity 329 6.5.2 Characteristics of sensors 362
6.2.4 Tribological properties 332 6.5.3 Electrochemical reactivity 366
6.2.5 Nanoindentation 335 6.6 Magnetic properties 370
6.3 Thermophysical properties 336 6.6.1 Super paramagnetism 370
6.3.1 Thermophysical properties 6.6.2 Material-specific discussion 370
related to transfer and storage 6.7 Optical properties 372
of heat 336 6.7.1 Transparency of nanoparticle 372
6.3.2 Front-face heating/front-face 6.7.2 Photonic crystal 375
detection picosecond 6.8 Catalytic property 377
thermoreflectance method 338
6.9 Properties of gas permeation and
6.3.3 Picosecond thermoreflectance
separation membranes 380
method by rear face heating/
front-face detection 339