Page 138 - Neural Network Modeling and Identification of Dynamical Systems
P. 138

REFERENCES                                  127
                          [19] Potenza R, Dunne JF, Vulli S, Richardson D, King P. Mul-  [36] Malki HA, Karayiannis NB, Balasubramanian M. Short-
                             ticylinder engine pressure reconstruction using NARX  term electric power load forecasting using feedforward
                             neural networks and crank kinematics. Int J Eng Res  neural networks. Expert Syst 2004;21(3):157–67.
                             2017;8:499–518.                           [37] Messai N, Riera B, Zaytoon J. Identification of a class
                          [20] Patel A, Dunne JF. NARX neural network modelling  of hybrid dynamic systems with feed-forward neural
                             of hydraulic suspension dampers for steady-state and  networks: About the validity of the global model. Non-
                             variable temperature operation. Veh Syst Dyn: Int J Veh  linear Anal Hybrid Syst 2008;2:773–85.
                             Mech Mobility 2003;40(5):285–328.         [38] Baek S, Park DS, Cho J, Lee YB. A robot endeffector
                          [21] Gaya MS, Wahab NA, Sam YM, Samsudin SI, Ja-  tracking system based on feedforward neural networks.
                             maludin IW. Comparison of NARX neural network  Robot Auton Syst 1999;28:43–52.
                             and classical modelling approaches. Appl Mech Mater  [39] Janczak A. Identification of nonlinear systems using
                             2014;554:360–5.                              neural networks and polynomial models: A block-
                          [22] Siegelmann HT, Horne BG, Giles CL. Computa-  oriented approach. Berlin, Heidelberg: Springer-Verlag;
                             tional capabilities of recurrent NARX neural net-  2005.
                             works. IEEE Trans Syst Man Cybern, Part B, Cybern  [40] Giri F, Bai EW. Block-oriented nonlinear system identi-
                             1997;27(2):208–15.                           fication. Berlin, Heidelberg: Springer-Verlag; 2010.
                          [23] Kao CY, Loh CH. NARX neural networks for nonlinear  [41] Janczak A. Comparison of four gradient-learning algo-
                             analysis of structures in frequency domain. J Chin Inst  rithms for neural network Wiener models. Int J Syst Sci
                             Eng 2008;31(5):791–804.                      2003;34(1):21–35.
                          [24] Pearson PK. Discrete-time dynamic models. New York–  [42] Ozer S, Zorlu Y, Mete S. System identification ap-
                             Oxford: Oxford University Press; 1999.       plication using Hammerstein model. Int J Syst Sci
                          [25] Cybenko G. Approximation by superposition of  2016;4(6):597–605.
                             a sigmoidal function. Math Control Signals Syst  [43] Sut HT, McAvoy TJ. Integration of multilayer percep-
                             1989;2(4):303–14.                            tron networks and linear dynamic models: A Ham-
                          [26] Hornik K, Stinchcombe M, White H. Multilayer feed-  merstein modeling approach. Ind Eng Chem Res
                             forward networks are universal approximators. Neural  1993;32:1927–36.
                             Netw 1989;2(5):359–66.                    [44] Peng J, Dubay R, Hernandez JM, Abu-Ayyad M. A
                          [27] Gorban AN. Generalized approximation theorem and  Wiener neural network-based identification and adap-
                             computational capabilities of neural networks. Sib J Nu-  tive generalized predictive control for nonlinear SISO
                             mer Math 1998;1(1):11–24 (in Russian).       systems. Ind Eng Chem Res 2011;4:7388–97.
                          [28] Haykin S. Neural networks: A comprehensive founda-  [45] Wills A, Schön TB, Ljung L, Ninness B. Identification
                             tion. 2nd ed.. Upper Saddle River, NJ, USA: Prentice  of Hammerstein–Wiener models. Ind Eng Chem Res
                             Hall; 1998.                                  2012;49:70–81.
                          [29] Hagan MT, Demuth HB, Beale MH, De Jesús O. Neural  [46] Peia JS, Smyth AW, Kosmatopoulos EB. Analysis and
                             network design. 2nd ed.. PSW Publishing Co.; 2014.  modification of Volterra/Wiener neural networks for
                          [30] Sandberg IW, Lo JT, Fancourt CL, Principe JC, Kata-  the adaptive identification of non-linear hysteretic dy-
                             giri S, Haykin S. Nonlinear dynamical systems: Feed-  namic systems. J Sound Vib 2004;275:693–718.
                             forward neural network perspectives. Wiley; 2001.  [47] Li S, Li Y. Model predictive control of an intensified con-
                          [31] Levin AU, Narendra KS. Recursive identification  tinuous reactor using a neural network Wiener model.
                             using feedforward neural networks. Int J Control  Neurocomputing 2016;185:93–104.
                             2013;61(3):533–47.                        [48] Lawry´nczuk M. Practical nonlinear predictive control
                          [32] Thibault J. Feedforward neural networks for the iden-  algorithms for neural Wiener models. J Process Control
                             tification of dynamic processes. Chem Eng Commun  2013;23:696–714.
                             1991;105:109–28.                          [49] Tan AH, Godfrey K. Modeling of direction-dependent
                          [33] Kuschewski JG, Hui S, Zak SH. Application of feed-  processes using Wiener models and neural networks
                             forward neural networks to dynamical system identi-  with nonlinear output error structure. IEEE Trans In-
                             fication and control. IEEE Trans Control Syst Technol  strum Meas 2004;53(3):744–53.
                             1993;1(1):37–49.                          [50] Michalkiewicz J. Modified Kolmogorov neural net-
                          [34] Rankovi´cVM, Nikoli´c IZ. Identification of nonlinear  work in the identification of Hammerstein and
                             models with feedforward neural network and digital re-  Wiener systems. IEEE Trans Neural Netw Learn Syst
                             current network. FME Trans 2008;36:87–92.    2012;23(4):657–62.
                          [35] Mironov K, Pongratz M. Applying neural networks for  [51] Lin DT, Dayhoff JE, Ligomenides PA. Trajectory pro-
                             prediction of flying objects trajectory. Vestn UGATU  duction with the adaptive time-delay neural network.
                             2013;17(6):33–7.                             Neural Netw 1995;8(3):447–61.
   133   134   135   136   137   138   139   140   141   142   143