Page 321 - Neural Network Modeling and Identification of Dynamical Systems
P. 321

312                                       INDEX

                           neural network, 103, 110    Engine thrust aircraft, 216   Hidden layer neurons, 46, 60, 61,
                           object, 24, 106             Engine thrust control, 134, 152       132, 133, 176
                           performance, 145, 147, 149  Error                         Hidden layers, 43, 46, 108, 117,
                           problem, 5, 114, 124          covariance, 67, 68                  118, 121, 125, 224
                           quality, 13, 117, 154, 158    covariance estimation, 67, 68  Hidden layers outputs, 101
                           scheme, 106, 141, 153         function, 52–59, 62, 63, 65, 67,  Hybrid ANN models, 101
                           signal, 80, 101, 116, 131, 154, 155,  156, 178, 183, 187,  Hypersonic aircraft, 135, 145
                                 171, 183, 193, 194, 201,      189–192, 195
                                 203, 212, 219             derivatives, 53, 59, 60, 64, 178  I
                           signals, 80                     Hessian, 182, 191         Identification problem, 4, 5, 140,
                           surfaces, 149, 159, 208, 213    landscape, 187                    159, 208, 213, 216, 217,
                           synthesis, 19, 94               value, 182                        225
                           theory, 102, 112              gradient, 66                Incremental learning, 52, 212
                           variables, 17, 72, 73, 75, 77, 78,  signal, 131           Incremental learning process, 72
                                 80, 82, 96, 101, 103, 105,  values, 150, 152–154    Indirect adaptive control, 25, 26
                                 108, 173, 202, 210, 217  EXogeneous inputs, 46, 96, 98  Indirect approach, 73, 80, 103–106
                           vector, 17, 18, 115, 156    Extended Kalman filter (EKF), 67  Inputs, 39, 41–43, 48, 50, 51, 59, 61,
                         Controllability, 11, 139, 208                                       62, 66, 70, 85, 95–98, 101,
                         Controllable                  F                                     107, 224
                           influences, 18                                               ANN, 108
                                                       Feedforward network, 39–41, 43,
                         Controllable system, 12, 13, 15                               control, 63, 85
                                                               65, 96, 97, 99, 101
                         Controller, 24–27, 102, 104,  Feedforward neural network, 41,  network, 43, 45, 60–62
                                 116–119, 124, 140, 144,       43, 96, 99, 100, 117, 166,  neurons, 45, 50
                                 147–149, 156, 159             189, 192              Instantaneous error function, 64,
                           adjusting, 104, 106, 107    Flight, 12, 15, 17, 18, 25, 105, 109,  65, 178
                           network, 140                        112, 149, 153, 157, 158,  Intelligent control, 102
                           PI, 139                             201, 204, 206, 217    International Standard
                         Controlling, 6, 9, 25, 93, 117, 160  aircraft, 10                   Atmosphere (ISA), 218
                         Correcting controller (CC), 75                              Interneurons, 69, 70
                                                         altitude, 160, 210, 218
                                                                                     Interpolation error, 185
                                                         conditions, 102, 160
                         D                                                           Intersubnets, 70
                         Deflection angle, 18, 78, 105, 108,  control, 132            Inverse Hessian, 55, 56
                                                         mode, 112, 139, 158
                                 109, 134, 157, 200, 201,  path angle, 18, 217       Inverse Hessian approximation,
                                 208, 209, 217, 225      regimes, 12, 21, 118, 139, 153,     55, 56
                         Derivatives                           157, 158, 160, 200    Inverse Hessian matrix, 194
                           error function, 53, 59, 60, 64, 178
                         Designing control laws        Functional basis (FB), 35     K
                           for control systems, 112                                  Kalman filter (KF), 68, 133
                           for multimode objects, 5    G
                         Discrete time, 19, 20, 85, 171  Gain Scheduling (GS), 25    L
                           instants, 63, 182           Gradient descent (GD), 53     Layered ANN model, 39, 132
                           state space, 170                                          Layered feedforward networks,
                         Disturbed motion, 86, 115–117,  H                                   42, 101
                                 160, 208              Hessian, 55, 57, 59–61, 63, 65, 178,  Layered Feedforward Neural
                                                               180, 181, 183, 190, 191       Network (LFNN), 45,
                         E                               computation, 55                     53, 58, 60, 64–66, 166,
                         Elevator actuator, 134, 150, 157  error function, 182, 191          168, 175, 176, 181
                         ENC optimality criterion, 121, 123  matrix, 57, 62          Learning
                         Engine thrust, 134, 153, 212, 218  nonsingular, 54            algorithm, 67, 77
   316   317   318   319   320   321   322   323   324