Page 121 - New Trends In Coal Conversion
P. 121
84 New Trends in Coal Conversion
References
Agnihotri, R., Chauk, S., Jadhav, R., Gupta, H., Mahuli, S., Fan, L.S., 1998. Multifunctional
sorbents for trace metal capture: fundamental sorption characteristics. In: Proc. of the 15th
Ann. Int. Pittsburgh Coal Conf., Pittsburgh, PA, USA.
Attalla, M.I., Morgan, S., Riley, K., Bryant, G., Nelson, P.F., 2004. Trace Element Deportment
in Combustion Processes. Research Report 50, Pullenvale, Queensland, Australia, 84pp.
Berger, R., Krabbe, H.J., 1998. Simulation of heavy metal emissions of a hard coal-fired power
plant. VGB PowerTech 9, 78e84.
Biswas, P., Wu, C.Y., 1998. Control of toxic metal emissions from combustors using sorbents: a
review. Journal of the Air and Waste Management Association 48, 113e127.
Bool, L.E., Helble, J.J., 1995. A laboratory study of the partitioning of trace elements during
pulverized coal combustion. Energy and Fuels 9, 880e887.
Butz, J., Turchi, C., Broderick, T.E., Albiston, J., 2000. Options for mercury removal from coal
fired flue gas streams: pilot scale research on activated carbon, alternative and regenerable
sorbents. In: Proc. of the 17th Annual Pittsburgh Coal Conference, PA, Sept. 11e14, Paper
19be3.
Cal, M.P., Strickler, B.W., Lizzio, A.A., 2000. High temperature hydrogen sulfide adsorption on
activated carbon. I. Effects of gas composition and metal addition. Carbon 38 (13),
1757e1765.
CATM, 2001. EPA Decision Directs Mercury Research. Center for Air Toxic Metals News-
letter, EERC, ND, USA vol. 7(2); 1e10.
CIEMAT, 1998. Flue gas cleaning. In: European Commission DG XVII Clean Coal Technology
Handbook. Section 5, Madrid/Brussels.
Clarke, L.B., Sloss, L.L., 1992. Trace Element Emissions from Coal Combustion and Gasifi-
cation. LEA Coal Research Report, 111pp.
C ordoba, P., Font, O., Izquierdo, M., Querol, X., Leiva, C., L opez-Ant on, M.A.,
Díaz-Somoano, M., Ochoa-Gonz alez, R., Martínez-Tarazona, M.R., G omez, P., 2012. The
retention capacity for trace elements by the flue gas desulphurization system under
operational conditions of a co-combustion power plant. Fuel 102, 773e788.
CTB, 2011. Significance of Trace Elements in Coal: An Overview. Coal Trading Blog (CTB),
20 pp. http://bestcoaltrading.blogspot.com/2011/11/significance-of-trace-elements-in-coal.
html.
Dale, L., 2006. ACARP Trace Elements in Coal. Report No. 02. Australian Coal Association
Research Program (ACARP), Queensland, Australia, 8pp.
Danihelka, P., Volna, Z., Jones, J.M., Williams, A., 2003. Emission of trace toxic metals during
pulverised fuel combustion of Czech coals. International Journal of Energy Research 27,
1181e1203.
Davidson, R.M., Clarke, L.B., 1996. Trace Elements in Coal. IEA Coal Research, IEAPER/21.
Díaz-Somoano, M., Martínez-Tarazona, M.R., 2003. Trace element evaporation during coal
gasification based on a thermodynamic equilibrium calculation approach. Fuel 82, 137e145.
Díaz-Somoano, M., Martínez-Tarazona, M.R., 2004. Retention of arsenic and selenium
compounds using limestone in a coal gasification flue gas. Environmental Science and
Technology 38, 899e903.
Dorman, D.C., Moulin, F.J.M., McManus, B.E., Mahle, K.C., James, R.A., Struve, M.F., et al.,
2002. Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: cor-
relation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium.
Toxicological Sciences 65 (1), 18e25.