Page 109 - New Trends in Eco efficient and Recycled Concrete
P. 109

Recycled plastic                                                   83


           Mehta, P.K., Monteiro, P.J., 2014. Concrete: Microstructure, Properties, and Materials, fourth
               ed McGraw-Hill, New York.
           Mesbah, H.A., Buyle-Bodin, F., 1999. Efficiency of polypropylene and metallic fibres on
               control of shrinkage and cracking of recycled aggregate mortars. Constr. Build. Mater.
               13, 439 447.
           Naik, T.R., Singh, S.S., Huber, C.O., Brodersen, B.S., 1996. Use of post-consumer waste
               plastics in cement-based composites. Cem. Concr. Res. 26, 1489 1492.
           Nibudey, R., Nagarnaik, P., Parbat, D., Pande, A., 2013. Strength and fracture properties of
               post consumed waste plastic fiber reinforced concrete. Int. J. Civil Struct. Environ.
               Infrastruct. Eng. Res. Dev. 3 (2), 9 16.
           Nili, M., Afroughsabet, V., 2010. The effects of silica fume and polypropylene fibers on the
               impact resistance and mechanical properties of concrete. Constr. Build. Mater. 24,
               927 933.
           Ochi, T., Okubo, S., Fukui, K., 2007. Development of recycled PET fiber and its application
               as concrete-reinforcing fiber. Cem. Concr. Compos. 29, 448 455.
           Ozbakkaloglu, T., Gu, L., Gholampour, A., 2017. Short-term mechanical properties of con-
               crete containing recycled polypropylene coarse aggregates under ambient and elevated
               temperature. J. Mater. Civil Eng. 29 (10), 04017191.
           Pacheco-Torgal, F., Ding, Y., Jalali, S., 2012. Properties and durability of concrete containing
               polymeric wastes (tyre rubber and polyethylene terephthalate bottles): an overview.
               Constr. Build. Mater. 30, 714 724.
           Panyakapo, P., Panyakapo, M., 2008. Reuse of thermosetting plastic waste for lightweight
               concrete. Waste Manage. 28, 1581 1588.
           Pelisser, F., Montedo, O.R.K., Gleize, P.J.P., Roman, H.R., 2012. Mechanical properties of
               recycled PET fibers in concrete. Mater. Res. 15, 679 686.
           PlasticsEurope, 2016. Plastics—the Facts 2016, An Analysis of European Plastics
               Production, Demand and Waste Data.
           Puertas, F., Amat, T., Ferna ´ndez-Jime ´nez, A., Va ´zquez, T., 2003. Mechanical and durable
               behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr.
               Res. 33, 2031 2036.
           Rai, B., Rushad, S.T., Kr, B., Duggal, S., 2012. Study of waste plastic mix concrete with
               plasticizer. Int. Sch. Res. Netw. 2012, 1 5.
           Ramadevi, K., Manju, R., 2012. Experimental investigation on the properties of concrete with
               plastic PET (bottle) fibres as fine aggregates. Int. J. Emerg. Technol. Adv. Eng. 2, 42 46.
           Ranaivomanana, N., Multon, S., Turatsinze, A., 2013. Basic creep of concrete under com-
               pression, tension and bending. Constr. Build. Mater. 38, 173 180.
           Ravindrarajah, R.S., 1999. Bearing strength of concrete containing polystyrene aggregate.
               Durability Build. Mater. Compon. 8, 505 514.
           Ravindrarajah, R.S., Tuck, A., 1994. Properties of hardened concrete containing treated
               expanded polystyrene beads. Cem. Concr. Compos. 16, 273 277.
           Remadnia, A., Dheilly, R., Laidoudi, B., Que ´neudec, M., 2009. Use of animal proteins as
               foaming agent in cementitious concrete composites manufactured with recycled PET
               aggregates. Constr. Build. Mater. 23, 3118 3123.
           Richardson, A.E., 2006. Compressive strength of concrete with polypropylene fibre additions.
               Struct. Surv. 24, 138 153.
           Sabaa, B., Ravindrarajah, R.S., 1997. Engineering properties of lightweight concrete contain-
               ing crushed expanded polystyrene waste. Fall Meeting, Symposium MM, Advances in
               Materials for Cementitious Composites. Materials Research Society, Boston, USA,
               pp. 1 3.
   104   105   106   107   108   109   110   111   112   113   114