Page 106 - New Trends in Eco efficient and Recycled Concrete
P. 106
80 New Trends in Eco-efficient and Recycled Concrete
References
Akcaozoglu, S., Ulu, C., 2014. Recycling of waste PET granules as aggregate in alkali acti-
vated blast furnace slag/metakaolin blends. Constr. Build. Mater. 58, 31 37.
Akcaozoglu, S., Atis, C.D., Akc¸ao ¨zoglu, K., 2010. An investigation on the use of shredded
waste PET bottles as aggregate in lightweight concrete. Waste Manage. 30, 285 290.
Albano, C., Camacho, N., Hernandez, M., Matheus, A., Gutierrez, A., 2009. Influence of
content and particle size of waste PET bottles on concrete behavior at different w/c
ratios. Waste Manage. 29 (10), 2707 2716.
Ali, M.R., Maslehuddin, M., Shameem, M., Barry, M.S., 2018. Thermal-resistant lightweight
concrete with polyethylene beads as coarse aggregates. Constr. Build. Mater. 164, 739 749.
Babu, D.S., Babu, K.G., Wee, T., 2005. Properties of lightweight expanded polystyrene
aggregate concretes containing fly ash. Cem. Concr. Res. 35, 1218 1223.
Babu, D.S., Babu, K.G., Tiong-Huan, W., 2006. Effect of polystyrene aggregate size on
strength and moisture migration characteristics of lightweight concrete. Cem. Concr.
Compos. 28, 520 527.
Babu, K.G., Babu, D.S., 2003. Behaviour of lightweight expanded polystyrene concrete con-
taining silica fume. Cem. Concr. Res. 33, 755 762.
Bagherzadeh, R., Sadeghi, A.H., Latifi, M., 2011. Utilizing polypropylene fibers to improve
physical and mechanical properties of concrete. Text. Res. J. 82 (1), 88 96.
Batayneh, M., Marie, I., Asi, I., 2007. Use of selected waste materials in concrete mixes.
Waste Manage. 27, 1870 1876.
Bhogayata, A.C., Arora, N.K., 2018. Impact strength, permeability and chemical resistance
of concrete reinforced with metalized plastic waste fibers. Constr. Build. Mater. 161,
254 266.
Buratti, N., Mazzotti, C., Savoia, M., 2010. Long-term behavior of fiber-reinforced self-com-
pacting concrete beamsIn: Design, Production and Placement of Self-Consolidating
Concrete, RILEM Bookseries 1, 439 450.
Chaudhary, M., Srivastava, V., Agarwal, V., 2014. Effect of waste low density polyethylene
on mechanical properties of concrete. J, Acad. Ind. Res. 3, 123 126.
Chen, B., Liu, J., 2004. Properties of lightweight expanded polystyrene concrete reinforced
with steel fiber. Cem. Concr. Res. 34, 1259 1263.
Choi, S.Y., Park, J.S., Jung, W.T., 2011. A study on the shrinkage control of fiber reinforced
concrete pavement. Procedia Eng. 14, 2815 2822.
Choi, Y.W., Moon, D.J., Chung, J.S., Cho, S.K., 2005. Effects of waste PET bottles aggre-
gate on the properties of concrete. Cem. Concr. Res. 35 (4), 776 781.
Choi, Y.W., Moon, D.J., Kim, Y.J., Lachemi, M., 2009. Characteristics of mortar and con-
crete containing fine aggregate manufactured from recycled waste polyethylene tere-
phthalate bottles. Constr. Build. Mater. 23 (8), 2829 2835.
Correia, J.R., Lima, J.S., de Brito, J., 2014. Post-fire mechanical performance of concrete
made with selected plastic waste aggregates. Cem. Concr. Compos. 53, 187 199.
de Oliveira, L.A.P., Castro-Gomes, J.P., 2011. Physical and mechanical behaviour of
recycled PET fibre reinforced mortar. Constr. Build. Mater. 25, 1712 1717.
Elzafraney, M., Soroushian, P., Deru, M., 2005. Development of energy-efficient concrete
buildings using recycled plastic aggregates. J. Archit. Eng. 11, 122 130.
Ferrandiz-Mas, V., Bond, T., Garcı ´a-Alcocel, E., Cheeseman, C., 2014. Lightweight mortars
containing expanded polystyrene and paper sludge ash. Constr. Build. Mater. 61,
285 292.