Page 180 - New Trends in Eco efficient and Recycled Concrete
P. 180
152 New Trends in Eco-efficient and Recycled Concrete
Roland, C., 2002. Aptitude a ` la valorisation des cendres d’incine ´ration des boues de l’assai-
nissement collectif. PhD Thesis, ENPC Ge ´ologie de l’inge ´nieur.
Samolada, M.C., Zabaniotou, A.A., 2014. Comparative assessment of municipal sewage
sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy man-
agement in Greece. Waste Manage. 34, 411 420. Available from: https://doi.org/
10.1016/j.wasman.2013.11.003.
Stasta, P., Boran, J., Bebar, L., Stehlik, P., Oral, J., 2006. Thermal processing of sewage
sludge. Appl. Therm. Eng. 26, 1420 1426. Available from: https://doi.org/10.1016/j.
applthermaleng.2005.05.030.
Stirmer, N., Baricevic, A., Nakic, D., Vouk, D., 2016. Use of incinerated sewage sludge ash
in concrete production. In: II International Conference on Concrete Sustainability
ICCS16, pp. 1465-1475.
Tashima, M.M., Reig, L., Santini Jr., M.A., Moraes, J.C.B., Akasaki, J.L., et al., 2017.
Compressive strength and microstructure of alkali-activated blast furnace slag/sewage
sludge ash (GGBS/SSA) blends cured at room temperature. Waste Biomass Valorization.
8, 1441 1451. Available from: https://doi.org/10.1007/s12649-016-9659-1.
Tay, J.-H., 1987. Sludge ash as filler for Portland cement concrete. J. Environ. Eng. 113 (2),
345 351. Available from: https://doi.org/10.1061/(ASCE)0733-9372(1987)113:2(345).
Tay, J.-H., Yip, W.-K., Show, K.-Y., 1991. Clay-blended sludge as lightweight aggregate
concrete material. J. Environ. Eng. 117 (6), 834 844. Available from: https://doi.org/
10.1061/(ASCE)0733-9372(1991)117:6(834).
Trauner, E.J., 1993. Sludge ash bricks fired to above and below ash-vitrifying temperature. J.
Environ. Eng. 119 (3), 506 519. Available from: https://doi.org/10.1061/(ASCE)0733-
9372(1993)119:3(506).
Vouk, D., Nakic, D., Stirmer, N., Cheeseman, C.R., 2017a. Use of sewage sludge ash in
cementitious materials. Rev. Adv. Mater. Sci. 49, 158 170.
Vouk, D., Nakic, D., Stirmer, N., Baricevic, A., 2017b. Effect of lime addition during sewage
sludge treatment on characteristics of resulting SSA when it is used in cementitious
Materials. Water Sci. Technol. 75 (4), 856 862. Available from: https://doi.org/
10.2166/wst.2016.554.
Wang, K.S., Chiou, I.J., 2004. Foamed lightweight materials made from mixed scrap metal
waste powder and sewage sludge ash. Waste Manage. Res. 22, 383 389. Available
from: https://doi.org/10.1177/0734242X04046215.
Wang, T., Xue, Y., Zhou, M., Lv, Y., Chen, Y., Wu, S., et al., 2017. Hydration kinetics,
freeze-thaw resistance, leaching behavior of blended cement containing co-combustion
ash of sewage sludge and rice husk. Constr. Build. Mater. 131, 361 370. Available
from: https://doi.org/10.1016/j.conbuildmat.2016.11.087.
Yamaguchi, N., Ikeda, K., 2010. Preparation of geopolymeric materials from sewage sludge
slag with special emphasis to the matrix compositions. J. Ceram. Jpn. 118 (2), 107 112.
Available from: https://doi.org/10.2109/jcersj2.118.107.
Yang, D.O., Lu, L., Wen, X., 2014. Experimental study on cementitious reactivity of MSTP
sludge incineration ash. Adv. Mater. Res. 838-841, 175 182. Available from: https://
doi.org/10.4028/www.scientific.net/AMR.838-841.175.
Yen, C.L., Tseng, D.-H., Wu, Y.-Z., 2012. Properties of cement mortar produced from mixed
waste materials with pozzolanic characteristics. Environ. Eng. Sci. 29 (7), 638 645.
Available from: https://doi.org/10.1089/ees.2011.0175.
Zhang, G., Hai, J., Mingzhong Ren, M., Zhang, S., Cheng, J., Yang, Z., 2013. Emission,
mass balance, and distribution characteristics of PCDD/Fs and heavy metals during co-
combustion of sewage sludge and coal in power plants. Environ. Sci. Technol. 47,
2123 2130. Available from: https://doi.org/10.1021/es304127k.