Page 284 - New Trends in Eco efficient and Recycled Concrete
P. 284
248 New Trends in Eco-efficient and Recycled Concrete
Frischknecht, R., Jungbluth, N. (Eds.), 2007. Overview and Methodology, Final Report
Ecoinvent v2.0, No. 1. Swiss Centre for Life Cycle Inventories, St. Gallen.
Galvı ´n, A.P., Agrela, F., Ayuso, J., Beltra ´n, M.G., Barbudo, A., 2014. Leaching assessment
of concrete made of recycled coarse aggregate: physical and environmental characterisa-
tion of aggregates and hardened concrete. Waste Manage. 34, 1693 1704. Available
from: https://doi.org/10.1016/j.wasman.2014.05.001.
Garcı ´a-Segura, T., Yepes, V., Alcala ´, J., 2014. Life cycle greenhouse gas emissions of
blended cement concrete including carbonation and durability. Int. J. Life Cycle Assess.
19, 3 12. Available from: https://doi.org/10.1007/s11367-013-0614-0.
Gartner, E., 2004. Industrially interesting approaches to low-CO 2 cements. Cem. Concr. Res.
34 (9), 1489 1498.
Gerilla, G.P., Teknomo, K., Hokao, K., 2007. An environmental assessment of wood and
steel reinforced concrete housing construction. Build. Environ. 42 (7), 2778 2784.
Goedkoop, M., Spriensma, R., 1999. The Eco-indicator 99 A Damage Oriented Method
for Life Cycle Impact Assessment. PRe ´ Consultants bv, Amersfoort.
Gokce, A., Nagataki, S., Saeki, T., Hisada, M., 2011. Identification of frost-susceptible
recycled concrete aggregates for durability of concrete. Constr. Build. Mater. 25,
2426 2431. Available from: https://doi.org/10.1016/j.conbuildmat.2010.11.054.
Gomes, M., de Brito, J., 2009. Structural concrete with incorporation of coarse recycled con-
crete and ceramic aggregates: durability performance. Mater. Struct. 42, 663 675.
Available from: https://doi.org/10.1617/s11527-008-9411-9.
Go ´mez-Sobero ´n, J.M.V., 2002. Porosity of recycled concrete with substitution of recycled
concrete aggregate: an experimental study. Cem. Concr. Res. 32, 1301 1311. Available
from: https://doi.org/10.1016/S0008-8846(02)00795-0.
Guine ´e, J.B., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Ekvall, T., et al., 2011. Life
cycle assessment: past, present, and future. Environ. Sci. Technol. 45 (1), 90 96.
Gursel, A.P., Masanet, E., Horvath, A., Stadel, A., 2014. Life-cycle inventory analysis of
concrete production: a critical review. Cem. Concr. Compos. 51, 38 48. Available
from: https://doi.org/10.1016/j.cemconcomp.2014.03.005.
Habert, G., Bouzidi, Y., Chen, C., Jullien, A., 2010. Development of a depletion indicator for
natural resources used in concrete. Resour. Conserv. Recycl. 54, 364 376. Available
from: https://doi.org/10.1016/j.resconrec.2009.09.002.
Hansen, T.C. (Ed.), 1992. Recycling of Demolished Concrete and Masonry. E&FN Spon,
London.
Heijungs, R., Guine ´e, J.B., Huppes, G., Lankreijer, R.M., Udo de Haes, H.A., Wegener Sleeswijk,
A., et al., 1992. Environmental Life Cycle Assessment of Products. Guide & Backgrounds
October 1992. Centre for Environmental Science, Leiden University, Leiden.
Heiyantuduwa, R., Alexander, M.G., Mackechnie, J.R., 2006. Performance of a penetrating
corrosion inhibitor in concrete affected by carbonation-induced corrosion. J. Mater. Civ.
Eng. 18, 842 850.
Hendriks, C.A., Worrell, E., de Jager, D., Block, K., Riemer, P., 2011. Emission Reduction
of Greenhouse Gases from the Cement Industry. Available from: hhttp://www.wbcsdce-
ment.org/pdf/tf1/prghgt42i (updated 2004 Aug 23; cited 2011 Aug 18).
Hiete, M., 2013. Waste management plants and technology for recycling construction and
demolition (C&D) waste: state-of-the-art and future challenges. In: Pacheco-Torgal, F.,
Tam, V., Labrincha, J., Ding, Y., de Brito, J. (Eds.), Handbook of Recycled Concrete
and Demolition Waste. Woodhead Publishing Limited, Cambridge, pp. 53 75.
Hills, L., Johansen, V.C., 2007. Hexavalent Chromium in Cement Manufacturing: Literature
Review. PCA R&D Serial No. 2983. Portland Cement Association, Skokie.