Page 288 - New Trends in Eco efficient and Recycled Concrete
P. 288
252 New Trends in Eco-efficient and Recycled Concrete
Mas-Gracia, B., Cladera-Bohigas, A., 2009. Effect of the incorporation of mixed recycled
aggregate on the properties of non-structural concretes [in Spanish]. Hormigo ´n y acero
253, 83 94.
Mazzotti, C., Manzi, S., Bignozzi, M.C., 2013. Role of recycled concrete aggregates on the
long-term behavior of structural concrete. In: Mechanics and Physics of Creep,
Shrinkage, and Durability of Concrete: A Tribute to Zden? K P. Ba Ant: Proceedings of
the Ninth International Conference on Creep, Shrinkage, and Durability Mechanics.
CONCREEP-9, September 22 25, 2013, Cambridge, MA. ASCE Publications, p. 388.
McManus, M.C., Taylor, C.M., 2015. The changing nature of life cycle assessment. Biomass
Bioenergy 82, 13 26.
Medina, C., Zhu, W., Howind, T., Sa ´nchez de Rojas, M.I., Frı ´as, M., 2014. Influence of
mixed recycled aggregate on the physical mechanical properties of recycled concrete.
J. Cleaner Prod. 68, 216 225. Available from: https://doi.org/10.1016/j.
jclepro.2014.01.002.
Mehta, P.K., 1998. Role of pozzolanic and cementitious materials in sustainable development
of the concrete industry. In: Malhotra, V.M. (Ed.), ACI Special Publication SP-178.
American Concrete Institute, Detroit MI, pp. 1 20.
Mercante, I.T., Bovea, M.D., Iba ´n ˜ez-Fore ´s, V., Arena, A.P., 2012. Life cycle assessment of
construction and demolition waste management systems: a Spanish case study. Int. J.
Life Cycle Assess. 17, 232 241. Available from: https://doi.org/10.1007/s11367-011-
0350-2.
NBN EN 197-1, 2011. Cement Part 1: Composition, Specifications and Conformity
Criteria for Common Cement. BIN, Brussels.
NEN 7345, 1995. Leaching Characteristics of Solid Earthy and Stony Building and Waste
Materials, Leaching Tests, Determination of the Leaching of Inorganic Components
from Building and Monolithic Waste Materials with the Diffusion Test. NEN, Delft.
O’Brien, K.R., Me ´nache ´, J., O’Moore, L.M., 2009. Impact of fly ash content and fly ash
transportation distance on embodied greenhouse gas emissions and water consumption
in concrete. Int. J. Life Cycle Assess. 14, 621 629. Available from: https://doi.org/
10.1007/s11367-009-0105-5.
Ofori, G., 1992. The environment: the fourth construction project objective? Constr. Manage.
Econ. 10, 369 395. Available from: https://doi.org/10.1080/01446199200000037.
Ortiz, O., Pasqualino, J.C., Castells, F., 2010. Environmental performance of construction
waste: comparing three scenarios from a case study in Catalonia, Spain. Waste Manage.
30, 646 654. Available from: https://doi.org/10.1016/j.wasman.2009.11.013.
Pacheco-Torgal, F., Jalali, S., 2010a. Compressive strength and durability properties of
ceramic wastes based concrete. Mater. Struct. 44, 155 167. Available from: https://doi.
org/10.1617/s11527-010-9616-6.
Pacheco-Torgal, F., Jalali, S., 2010b. Reusing ceramic wastes in concrete. Constr. Build.
Mater. 24, 832 838. Available from: https://doi.org/10.1016/j.conbuildmat.2009.10.023.
Panesar, D.K., Seto, K.E., Churchill, C.J., 2017. Impact of the selection of functional unit on
the life cycle assessment of green concrete. Int. J. Life Cycle Assess. 1 18. Available
from: https://doi.org/10.1007/s11367-017-1284-0.
Park, K., Hwang, Y., Seo, S., Seo, H., 2003. Quantitative assessment of environmental
impacts of life cycle of highways. J. Constr. Eng. Manage. 129 (1), 25 31.
Pedro, D., de Brito, J., Evangelista, L., 2014. Performance of concrete made with aggregates
recycled from precasting industry waste: influence of the crushing process. Mater.
Struct. 1 14. Available from: https://doi.org/10.1617/s11527-014-0456-7.