Page 141 - Numerical Methods for Chemical Engineering
P. 141

130     3 Matrix eigenvalue analysis



                   w
                               x








                               Px
                                           T
                   Figure 3.6 Effect of P = I − 2ww on an arbitrary vector x.
                     We next demonstrate how a sequence of such Householder transformations performs the
                   QR factorization,

                                                           
                                          R 11  R 12  ...  R 1N
                                             R 22  ...  R 2N  
                                                                     T
                                                                QQ = I             (3.152)
                                                   . .   . .  
                            A = QR = Q 
                                                    .   .  
                                                        R NN
                   Let us examine the first column of R that has a nonzero element only at the first component.
                                    N
                   For any vector x ∈  , we can find a vector v, generating a Householder reflection P, that
                   zeros all but the first component of x:
                                                                b
                                                               
                                        vv          2(v · x)         [1]
                                          T                     0
                             Px = I − 2     x = x −       v =  .  = be             (3.153)
                                                               
                                        |v| 2        |v| 2     . 
                                                                .
                                                                0
                                         [1]
                                 −2
                                                                             [1]
                   As x − 2(v · x)|v| v = be , v must be a linear combination of x and e ,
                                                 v = x + αe [1]                      (3.154)
                   As
                                    2
                                                                2

                                  |v| = x + αe [1]       [1]     =|x| + 2αx 1 + α 2
                                                 · x + αe
                                                                                     (3.155)
                                               [1]       2
                                  v · x = x + αe  · x =|x| + αx 1
                   the Householder transformation acts on x as
                                             2
                                         2(|x| + αx 1 )     [1]
                              Px = x −                x + αe
                                         2
                                       |x| + 2αx 1 + α 2
                                              2                    2
                                          2(|x| + αx 1 )      2α(|x| + αx 1 )  [1]
                                 = 1 −                  x −                 e        (3.156)
                                          2
                                                               2
                                        |x| + 2αx 1 + α 2    |x| + 2αx 1 + α 2
                   We obtain Px = be [1]  by satisfying
                                    2
                                                          α = ε|x|
                                2 |x| + αx 1
                           1 =               ⇒                 −1,  x 1 < 0          (3.157)
                                 2
                              |x| + 2αx 1 + α 2  ε = sign(x 1 ) =
                                                              1,    x 1 ≥ 0
                   so that
                                                Px =−ε|x|e [1]                       (3.158)
   136   137   138   139   140   141   142   143   144   145   146