Page 485 - Numerical Methods for Chemical Engineering
P. 485

474     Index



                   Stochastic simulation                Trust radius 225
                    Boltzmann distribution 337          Trust-region Newton optimization method 225–227
                    Brownian dynamics (see also Brownian dynamics)
                       327                              Variance 327
                    Diffusion Limited Aggregation (DLA) 366  MATLAB var 364
                    Example. Monte Carlo simulation of 2-D Ising  Vector
                       lattice 356–357                   addition 5
                    Example. stochastic modeling of polymer chain  column vector 4
                       length distribution 318–321       complex vectors 7
                    Example. stochastic modeling of polymer gelation  complex conjugate 7
                       321–325                             dot product 7
                    kinetic Monte Carlo 369              dot (scalar, inner) product 5, 7
                    Markov chain 354                     length 6
                    Markov process 353                   linear independence 26
                    Metropolis Monte Carlo method 353–357  metric 6
                      condition of detailed balance 355  norm 6, 7
                    optimization 361–364                 null vector 5, 29
                      genetic algorithm 362–364          orthogonal vectors 6, 27
                      Particle Swarm Optimization (PSO) 367  orthonormal vectors 6, 27
                      simulated annealing 361–362        row vector 4
                    probability theory (see also Probability theory)  set of complex vectors 7
                       317–338                           set of real vectors 4
                    random walks 328–329                Vector space
                    stochastic calculus 343–347          basis set 26
                      Chapman-Kolmogorov equation 349    basis set expansion 27
                      Fokker-Planck equation (see also Fokker-Planck  definition, required properties 24
                       equation) 347–351                 Krylov subspace 287
                      Forward Kolmogorov equation 350    linear independence 26
                      Itˆo’s lemma 345                   linear transformation 24
                    Stochastic Differential Equations (SDEs)  orthogonal basis 27
                       342–353                           orthonormal basis 27
                      explicit Euler SDE method 343      span 29
                      Itˆo-type SDE 343                  subspace 29
                      Mil’shtein SDE method 346         von Neumann boundary condition 265
                    stochastic integral 343             Voronoi polyhedra 303
                    Stochastic Partial Differential Equations 358–360  MATLAB voronoi 303
                    stochastic system 317                MATLAB voronoin 303
                    transition probability 349
                    Wiener process 341–342              Weight function 304
                   Stokes-Einstein relation 352         Weighted residual methods 304–305
                   Successive Over-Relaxation (SOR) method 285  collocation method 304
                    Symmetric SOR (SSOR) method 286        orthogonal collocation 304
                                                         Galerkin method 304
                   Taylor series 62                      least-squares method 304
                   Thiele modulus 266                    residual function 304
   480   481   482   483   484   485