Page 480 - Numerical Methods for Chemical Engineering
P. 480

Index                                                               469



                       (RK 2) 178; Runge-Kutta method, 4th order  Jordan form 118
                       (RK 4) 177; Runge-Kutta-Fehlberg method  of a normal matrix 121
                       (RKF 45) 178; MATLAB ode45 182, 206
                     single-step methods 176; stiff system algorithms  Karush-Kuhn-Tucker (KKT) conditions 238
                       180, 182, 192; stiff decay 192; symplectic  Kroenecker delta 5
                       methods 194; time step restrictions 190–191;  Krylov subspace 287
                       velocity Verlet method 195
                    Partial Differential Equation (PDE) systems  Lagrange multiplier 234
                     Example. dynamic simulation of a tubular  Lagrange’s equation of motion 136
                       chemical reactor 282            Lagrangian function
                     stiffness 191                       classical mechanics 136
                     stochastic PDEs 358–360             optimization 234
                    state vector 155                   Landau free energy model 358
                    Stochastic Differential Equations (SDEs) (see also  Langevin equation 340, 343
                       Stochastic simulation) 342–353  Lennard-Jones interaction model 368
                     explicit Euler SDE method 343     Levenberg-Marquardt method 389
                     Mil’shtein SDE method 346         Line searches 216–217
                  Integration                            backtrack (Armijo) line search 216
                    Initial value problems (IVPs) (see also Initial value  strong line search 216
                       problems) 155                     weak line search 216
                    MATLAB quad 163                    Linear algebraic systems 1–57
                    MATLAB trapz 140                     as linear transformation 23
                    Monte Carlo method (see also Monte Carlo) 168,  BVPs of high dimension 282–294
                       360–361                           dimension theorem 31
                    numerical (see also Quadrature) 162  Example. 1-D laminar flow of Newtonian fluid
                    orthogonal functions 164                47–54
                    scalar product 164                   Example. modeling a separation system 45–46
                    square integrable functions 164      existence of solution 30, 110, 143
                    weighted integrals 164               least-squares approximation solution 145
                  Interpolation                          MATLAB mldivide ‘/’ 53, 56
                    Hermite method 160                   null space, kernel 29, 144
                    Lagrange method 157                  range 30, 144
                    MATLAB interp1 100, 161              solution by Gaussian elimination (see also
                    Newton method 157                       Gaussian elimination) 10–23, 284
                    polynomial methods 156–161           solution by iterative methods (see also Iterative
                    support points 156                      linear solvers) 285–291
                  Iterative linear solvers               solution by SVD 143
                    Conjugate Gradient (CG) method (see also  uniqueness of solution 30, 110, 143
                       Conjugate Gradient (CG) method) 286–287  LU factorization 38
                    Gauss-Seidel method 285–286          incomplete LU factorization 290
                    Generalized Minimum RESidual (GMRES) method  MATLAB lu 57
                       287–288                           MATLAB luinc 291
                    Jacobi method 114, 285–286           use in calculating matrix inverse 37
                    Krylov subspace 287
                    MATLAB bicg 287                    Macosko-Miller method 322
                    MATLAB bicgstab 287                Markov chain 354
                    MATLAB gmres 287                   Markov process 353
                    MATLAB pcg 285                     Mass matrix
                    preconditioners (see Preconditioner matrix)  classical mechanics 136
                       288–291                           of DAE system 195
                    Successive Over-Relaxation (SOR) method  MATLAB commands
                       285                               adaptmesh 310
                    Symmetric SOR (SSOR) method 286      bicg 287
                    use for BVPs of high dimension 282–294  bicgstab 287
                  Itˆo-type SDE 343                      binocdf 330
                  Itˆo’s lemma 345                       binofit 330
                                                         binoinv 330
                  Jacobi method 114, 285                 binopdf 330
                  Jacobian matrix 73                     binornd 330
                    approximating by Broyden’s method 77  binostat 330
                    dynamic stability 172                chol 43, 57
                    estimating by finite differences 77   cholinc 291
                  Joint probability 320                  cond 113
   475   476   477   478   479   480   481   482   483   484   485