Page 475 - Numerical Methods for Chemical Engineering
P. 475

Index














                   A-conjugacy 222                       Example. fitting the kinetic parameters of a
                   Aliasing 446                             chemical reaction
                   Arc length continuation 203             fitting kinetic parameters to rate data by
                    Example. multiple steady states in a nonisothermal  transformation to linear model 380
                       CSTR 204–206                        fitting rate constant and generating CI from
                   Augmented Lagrangian method 231–240      dynamic reactor data 402
                   Automatic mesh generation 300–303       fitting rate constant to multiresponse kinetic data
                    Delaunay tessellation (see also Delaunay  418–419
                       tessellation) 303                   MCMC analysis of elementary reaction
                    Voronoi polyhedra (see also Voronoi polyhedra)  hypothesis 411
                       303                                 MCMC generation of CI for rate constant from
                                                            multiresponse data 420–421
                   Balances                                MCMC rate constant fitting and CI generation
                    constitutive equation 259               from composite data set 422–426
                    control volume 258                   Gauss-Markov conditions 384
                    field 258                             general problem formulation 372–373
                    macroscopic 259                      hypothesis testing 426–427
                    microscopic 259                        Bayes’ factor 427
                   Bayesian statistics 372–432             probability of hypothesis being true as posterior
                    Bayes’ factor 427                       expectation 403
                    Bayes’ theorem 321, 382–383          likelihood function 386, 415
                    Bayesian Information Criterion (BIC) of Schwartz  Markov Chain Monte Carlo (MCMC) simulation
                       430                                 Metropolis-Hastings sampling 404
                    Bayesian view of statistical inference 381–387  multiresponse data 419–421
                    composite data sets 421–426            single-response data 403–411
                      marginal posterior for model parameters  model parameters 372
                       422                               model selection 428
                    Credible (Confidence) Interval (CI) 397  multiresponse regression 414–421
                      approximate analytical CI for single-response  definition 372
                       data 395–399; for model parameters 398; for  fitting by simulated annealing 417–419
                       predicted responses 399             likelihood function 415
                      calculation of Highest Probability Density (HPD)  marginal posterior for model parameters 415
                       CI’s 409–411                        Markov Chain Monte Carlo (MCMC) simulation
                      MATLAB nlparci 401                    419–421; calculation of highest probability
                      MATLAB nlpredci 401                   density (HPD) CI’s 420; calculation of
                      MATLAB norminv 397                    marginal posterior densities 420; calculation
                      outliers 399                          of posterior expectations 419
                    design matrix                          noninformative prior 415
                      for linear regression 377            posterior density 415
                      linearized for nonlinear regression 389  sum of squared errors matrix 412
                    eigenvalue analysis; Principle Component Analysis  posterior probability distribution 385
                       (PCA) 412–414                       marginal posterior density 395; for
                    Example. comparing protein expression levels of  multiresponse data 415; kernel method 407;
                       two bacterial strains                nuisance parameter 395
                      as linear regression problem 380–381  multiresponse data 415
                      MCMC analysis of hypothesis 406–407  single-response data 394
                      MCMC calculation of marginal posterior density  predicted responses 377
                       408–409                           predictor variables 372


           464
   470   471   472   473   474   475   476   477   478   479   480