Page 182 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 182

6.3 The radial equation                     173

                                                    Table 6.1. (cont.)

                                    (Z=a ì ) 3=2              2      3   4   ÿr=2
                               R 61 ˆ   p  (840 ÿ 840r ‡ 252r ÿ 28r ‡ r )r e
                                    432 210
                                    (Z=a ì ) 3=2             2    3  2 ÿr=2
                               R 62 ˆ   p  (336 ÿ 168r ‡ 24r ÿ r )r e
                                    864 105
                                    (Z=a ì ) 3=2         2  3 ÿr=2
                               R 63 ˆ    p  (72 ÿ 18r ‡ r )r e
                                    2592 35
                                    (Z=a ì ) 3=2
                                                     4 ÿr=2
                               R 64 ˆ     p  (10 ÿ r)r e
                                    12 960 7
                                     (Z=a ì ) 3=2
                                               5 ÿr=2
                               R 65 ˆ     p  r e
                                    12 960 77

                          We observe that the solutions S nl (r) of the differential equation (6.24)
                                         l ÿr=2
                        contain the factor r e  . Therefore, we de®ne the function F nl (r)by
                                                                l ÿr=2
                                                 S nl (r) ˆ F nl (r)r e
                        and substitute this expression into equation (6.24) with ë ˆ n to obtain
                                        2
                                       d F nl             dF nl
                                     r      ‡ (2l ‡ 2 ÿ r)    ‡ (n ÿ l ÿ 1)F nl ˆ 0       (6:51)
                                       dr 2                dr
                        where we have also divided the equation by the common factor r.
                          The differential equation satis®ed by the associated Laguerre polynomials is
                        given by equation (F.16) as
                                           2
                                          d L j            dL j
                                                                          j
                                        r    k  ‡ (j ‡ 1 ÿ r)  k  ‡ (k ÿ j)L ˆ 0
                                          dr 2              dr            k
                        If we let k ˆ n ‡ l and j ˆ 2l ‡ 1, then this equation takes the form
                                  2 2l‡1
                                 d L                  dL 2l‡1
                               r    n‡l  ‡ (2l ‡ 2 ÿ r)  n‡l  ‡ (n ÿ l ÿ 1)L 2l‡1  ˆ 0    (6:52)
                                   dr 2                 dr                 n‡l
                          We have already found that the set of functions S nl (r) contains all the
                        solutions to (6.24). Therefore, a comparison of equations (6.51) and (6.52)
                        shows that F nl is proportional to L 2l‡1 . Thus, the function S nl (r) is related to
                                                        n‡1
                        the polynomial L 2l‡1 (r)by
                                       n‡l
                                                           l ÿr=2 2l‡1
                                               S nl (r) ˆ c nl r e  L  (r)                (6:53)
                                                                  n‡l
                          The proportionality constants c nl in equation (6.53) are determined by the
                        normalization condition (6.25). When equation (6.53) is substituted into (6.25),
                        we have
   177   178   179   180   181   182   183   184   185   186   187