Page 179 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 179

170                          The hydrogen atom
                                                                d   r
                                              ^
                                              A l‡1 S l‡1,l ˆÿ r  ‡ ‡ l S l‡1,l ˆ 0
                                                               dr   2
                             or
                                                                     r
                                                     r  dS l‡1,l  ˆ  l ÿ  S l‡1,l
                                                        dr           2
                             Integration gives

                                                                        r e
                                                   S l‡1,l ˆ [(2l ‡ 2)!] ÿ1=2 l ÿr=2           (6:49)
                             where the integration constant was evaluated using equations (6.25), (A.26),
                             and (A.28).
                               The eigenfunction S 21 from equation (6.49) is
                                                                1
                                                         S 21 ˆ p re ÿr=2
                                                                  
                                                               2 6
                             and equations (6.46) and (6.26b) for l ˆ 1give

                                                   1     d    r       1
                                            S 31 ˆ p  r  ÿ ‡ 3     p  re ÿr=2
                                                    6    dr   2      2 6
                                                   1          ÿr=2
                                                ˆ    (4 ÿ r)re
                                                  12
                                                  r 
                                                     3     d   r       1          ÿr=2
                                            S 41 ˆ      r    ÿ ‡ 4       (4 ÿ r)re
                                                    40    dr   2      12
                                                    1                2   ÿr=2
                                                ˆ p   (20 ÿ 10r ‡ r )re
                                                  8 30
                                                .
                                                . .
                             The functions S 31 , S 41 , ... are automatically normalized as speci®ed by
                             equation (6.25). The normalized eigenfunctions S nl (r) for l ˆ 2, 3, 4, ... with
                             n > (l ‡ 1) are obtained by the same procedure.
                                                                                               ^
                               A general formula for S nl involves the repeated application of B k for
                             k ˆ l ‡ 2, l ‡ 3, ... , n ÿ 1, n to S l‡1,l in equation (6.49). The raising operator
                             must be applied (n ÿ l ÿ 1) times. The result is
                                            ÿ1
                                  S nl ˆ (b nl ) (b nÿ1,l ) ÿ1  ... (b l‡2,l ) ÿ1  ^ ^  ^
                                                                   B n B nÿ1 ... B l‡2 S l‡1,l
                                                                      1=2
                                               (l ‡ 1)(2l ‡ 1)!            d    r
                                     ˆ                                   r   ÿ ‡ n
                                         n(n ‡ l)!(n ÿ l ÿ 1)!(2l ‡ 2)!    dr   2

                                              d   r                  d   r
                                                                                     l ÿr=2
                                       3 r      ÿ ‡ n ÿ 1          r   ÿ ‡ l ‡ 2 r e           (6:50)
                                             dr   2                 dr   2
                               Just as equation (6.46) can be used to go `up the ladder' to obtain S n,l from
   174   175   176   177   178   179   180   181   182   183   184