Page 176 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 176

6.3 The radial equation                     167
                                                                          1=2
                                       ^         ë ÿ 1
                                      A ë S ël ˆ        (ë ‡ l)(ë ÿ l ÿ 1)  S ëÿ1,l       (6:44)
                                                   ë
                        where we have arbitrarily taken the positive square root.
                          The numerical constant b ël , de®ned in equation (6.34), may be determined
                        by an analogous procedure, beginning with the square of both sides of equation
                        (6.34) and using equations (6.27), (6.26a), (6.34), (6.30), and (6.39). We obtain

                                    ë                             ë
                            2
                           b ˆ          [ë(ë ÿ 1) ÿ l(l ‡ 1)] ˆ        (ë ‡ l)(ë ÿ l ÿ 1)  (6:45)
                            ël
                                  ë ÿ 1                         ë ÿ 1
                        so that equation (6.34) becomes
                                                                            1=2
                                                     ë
                                      ^
                                      B ë S ëÿ1,l ˆ       (ë ‡ l)(ë ÿ l ÿ 1)  S ë,l       (6:46)
                                                   ë ÿ 1
                        Taking the positive square root here will turn out to be consistent with the
                        choice in equation (6.44).



                        Quantization of the energy
                        The parameter ë is positive, since otherwise the radial variable r, which is
                        inversely proportional to ë, would be negative. Furthermore, the parameter ë
                        cannot be zero if the transformations in equations (6.21), (6.22), and (6.23) are
                        to remain valid. To ®nd further restrictions on ë we must consider separately
                        the cases where l ˆ 0 and where l > 1.
                          For l ˆ 0, equation (6.44) takes the form
                                                  ^
                                                 A ë S ë0 ˆ (ë ÿ 1)S ëÿ1,0                (6:47)
                        Suppose we begin with a suitably large value of ë,say î, and continually apply
                        the lowering operator to both sides of equation (6.47) with ë ˆ î
                                       ^   ^
                                       A îÿ1 A î S î0 ˆ (î ÿ 1)(î ÿ 2)S îÿ2,0
                                       ^   ^    ^
                                       A îÿ2 A îÿ1 A î S î0 ˆ (î ÿ 1)(î ÿ 2)(î ÿ 3)S îÿ3,0
                                       .
                                       . .
                        Eventually this procedure produces an eigenfunction S îÿk,0 , k being a positive
                        integer, such that 0 ,(î ÿ k) < 1. The next step in the sequence would give a
                        function S îÿkÿ1,0 or S ë0 with ë ˆ (î ÿ k ÿ 1) < 0, which is not allowed. Thus,
                        the sequence must terminate with the condition
                                          ^
                                          A îÿk S îÿk,0 ˆ (î ÿ k ÿ 1)S îÿkÿ1,0 ˆ 0
                        which can only occur if (î ÿ k) ˆ 1. Thus, î must be an integer and the
                        minimum value of ë for l ˆ 0is ë ˆ 1.
                                                                                   2
                          For the situations in which l > 1, we note that the quantities a in equation
                                                                                   ël
   171   172   173   174   175   176   177   178   179   180   181