Page 173 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 173

164                          The hydrogen atom
                                               ^ ^
                                              A ë B ë S ëÿ1,l ˆ [ë(ë ÿ 1) ÿ l(l ‡ 1)]S ëÿ1,l   (6:30)
                             when ë is replaced by ë ÿ 1 in equation (6.24).
                                                                                               ^
                               If we operate on both sides of equation (6.29) with the operator A ë ,we
                             obtain
                                               ^ ^ ^                           ^
                                               A ë B ë A ë S ël ˆ [ë(ë ÿ 1) ÿ l(l ‡ 1)]A ë S ël  (6:31)
                             Comparison of this result with equation (6.30) leads to the conclusion that
                             ^
                             A ë S ël and S ëÿ1,l are, except for a multiplicative constant, the same function.
                             We implicitly assume here that S ël is uniquely determined by only two
                             parameters, ë and l. Accordingly, we may write
                                                         ^
                                                         A ë S ël ˆ a ël S ëÿ1,l               (6:32)
                             where a ël is a numerical constant, dependent in general on the values of ë and
                             l, to be determined by the requirement that S ël and S ëÿ1,l be normalized.
                                                                                           ^
                             Without loss of generality, we can take a ël to be real. The function A ë S ël is an
                             eigenfunction of the operator in equation (6.24) with eigenvalue decreased by
                                                   ^
                             one. Thus, the operator A ë transforms the eigenfunction S ël determined by ë, l
                             into the eigenfunction S ëÿ1,l determined by ë ÿ 1, l. For this reason the
                                      ^
                             operator A ë is a lowering ladder operator.
                               Following an analogous procedure, we now operate on both sides of equation
                                                   ^
                             (6.30) with the operator B ë to obtain
                                            ^ ^ ^                             ^                (6:33)
                                            B ë A ë B ë S ëÿ1,l ˆ [ë(ë ÿ 1) ÿ l(l ‡ 1)]B ë S ëÿ1,l
                                                                                ^
                             Comparing equations (6.29) and (6.33) shows that B ë S ëÿ1,l and S ël are
                             proportional to each other
                                                         ^                                     (6:34)
                                                         B ë S ëÿ1,l ˆ b ël S ël
                             where b ël is the proportionality constant, assumed real, to be determined by the
                                                                                     ^
                             requirement that S ëÿ1,l and S ël be normalized. The operator B ë transforms the
                             eigenfunction S ëÿ1,l into the eigenfunction S ël with eigenvalue ë increased by
                                                         ^
                             one. Accordingly, the operator B ë is a raising ladder operator.
                               The next step is to evaluate the numerical constants a ël and b ël . In order to
                             accomplish these evaluations, we must ®rst investigate some mathematical
                             properties of the eigenfunctions S ël (r).

                             Orthonormal properties of S ël (r)
                             Although the functions R nl (r) according to equation (6.20) form an orthogonal
                                              2
                             set with w(r) ˆ r , the orthogonal relationships do not apply to the set of
                                                          2
                             functions S ël (r) with w(r) ˆ r . Since the variable r introduced in equation
                             (6.22) depends not only on r, but also on the eigenvalue E, or equivalently on
                             ë, the situation is more complex. To determine the proper orthogonal relation-
                             ships for S ël (r), we express equation (6.24) in the form
   168   169   170   171   172   173   174   175   176   177   178