Page 189 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 189

180                          The hydrogen atom
                                                                 z



                                                                  1


                                                                             any axis '
                                                                               z-axis


                                                                  2
                                                                      2p z

                                               any axis '                        any axis '
                                                 x-axis                            y-axis




                                       2              1                  2              1
                                                               x                                 y



                                                     2p x                              2p y



                             Figure 6.2 Polar graphs of the hydrogen 2p atomic orbitals. Regions of positive and
                             negative values of the orbitals are indicated by ‡ and ÿ signs, respectively. The
                             distance of the curve from the origin is proportional to the square of the angular part
                             of the atomic orbital.



                                                                 7=2
                                                       1      Z       2    2  ÿ( Zr=3a 0 )
                                             j3d 2iˆ   p      (3z ÿ r )e                (6:64a)
                                               z
                                                     81 6ð a 0

                             From the four complex orbitals j3d 1 i, j3d ÿ1 i, j3d 2 i, and j3d ÿ2 i, we construct
                             four equivalent real orbitals by the relations



                                                                        Z
                                                                 2 1=2     7=2
                                 j3d xz i  2 ÿ1=2 (j3d 1 i‡j3d ÿ1 i) ˆ        xze ÿ( Zr=3a 0 )  (6:64b)
                                                               81ð 1=2  a 0
                                                                          Z
                                                                   2 1=2      7=2
                                 j3d yz i ÿi2 ÿ1=2 (j3d 1 iÿj3d ÿ1 i) ˆ         yze ÿ( Zr=3a 0 )  (6:64c)
                                                                  81ð 1=2  a 0
   184   185   186   187   188   189   190   191   192   193   194