Page 208 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 208

7.3 Spin one-half                        199

                                                  j÷iˆ c á jái‡ c â jâi                   (7:11)
                        where c á and c â are complex constants. If the ket j÷i is normalized, then
                        equation (7.10) gives
                                                       2
                                                              2
                                                    jc á j ‡jc â j ˆ 1
                        The ket j÷i may also be expressed as a column matrix, known as a spinor

                                                   c á        1         0
                                           j÷iˆ         ˆ c á     ‡ c â                   (7:12)
                                                   c â        0         1
                        where the eigenfunctions jái and jâi in spinor notation are

                                                     1                0
                                              jáiˆ       ,    jâiˆ                        (7:13)
                                                     0                1
                                                                 1
                          Equations (7.4), (7.5), and (7.8) for the s ˆ case are
                                                                 2
                                           ^ 2     3 2         ^ 2    3 2                 (7:14)
                                           S jáiˆ " jái,
                                                               S jâiˆ " jâi
                                                   4                  4
                                            ^       1         ^         1                 (7:15)
                                            S z jáiˆ "jái,
                                                    2         S z jâiˆÿ "jâi
                                                                        2
                                               ^              ^                          (7:16a)
                                               S ‡ jáiˆ 0,
                                                              S ÿ jâiˆ 0
                                            ^                 ^                          (7:16b)
                                            S ‡ jâiˆ "jái,
                                                              S ÿ jáiˆ "jâi
                                                               ^
                                                                      ^
                        Equations (7.16) illustrate the behavior of S ‡ and S ÿ as ladder operators. The
                                ^
                        operator S ‡ `raises' the state jâi to state jái, but cannot raise jái any further,
                             ^
                        while S ÿ `lowers' jái to jâi, but cannot lower jâi. From equations (7.7) and
                        (7.16), we obtain the additional relations
                                           ^       1          ^      1                   (7:17a)
                                           S x jáiˆ "jâi,
                                                              S x jâiˆ "jái
                                                   2                 2
                                           ^       i          ^        i                 (7:17b)
                                           S y jáiˆ "jâi,
                                                              S y jâiˆÿ "jái
                                                   2                   2
                          We next introduce three operators ó x , ó y , ó z which satisfy the relations
                                       ^    1          S y ˆ "ó y ,   ^    1              (7:18)
                                                       ^
                                                            1
                                       S x ˆ "ó x ,
                                                                           2
                                            2               2         S z ˆ "ó z
                        From equations (7.15) and (7.17), we ®nd that the only eigenvalue for each of
                                             2
                                          2
                                      2
                        the operators ó , ó , ó is 1. Thus, each squared operator is just the identity
                                      x
                                          y
                                              z
                        operator
                                                    2
                                                          2
                                                               2
                                                   ó ˆ ó ˆ ó ˆ 1                          (7:19)
                                                    x     y    z
                        According to equations (7.2) and (7.18), the commutation rules for ó x , ó y , ó z
                        are
                             [ó x , ó y ] ˆ 2ió z ,  [ó y , ó z ] ˆ 2ió x ,  [ó z , ó x ] ˆ 2ió y  (7:20)
                          The set of operators ó x , ó y , ó z anticommute, a property which we demon-
                        strate for the pair ó x , ó y as follows
   203   204   205   206   207   208   209   210   211   212   213