Page 209 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 209

200                                 Spin
                                      2i(ó x ó y ‡ ó y ó x ) ˆ (2ió x )ó y ‡ ó y (2ió x )

                                                      ˆ (ó y ó z ÿ ó z ó y )ó y ‡ ó y (ó y ó z ÿ ó z ó y )
                                                              2    2
                                                      ˆÿó z ó ‡ ó ó z
                                                              y     y
                                                      ˆ 0
                             where the second of equations (7.20) and equation (7.19) have been used. The
                             same procedure may be applied to the pairs ó y , ó z and ó x , ó z, giving
                                     (ó x ó y ‡ ó y ó x ) ˆ (ó y ó z ‡ ó z ó y ) ˆ (ó z ó x ‡ ó x ó z ) ˆ 0  (7:21)
                             Combining equations (7.20) and (7.21), we also have
                                           ó x ó y ˆ ió z ,  ó y ó z ˆ ió x ,  ó z ó x ˆ ió y  (7:22)

                             Pauli spin matrices
                             An explicit set of operators ó x , ó y , ó z with the foregoing properties can be
                             formed using 2 3 2 matrices. The properties of matrices are discussed in
                             Appendix I. In matrix notation, equation (7.19) is

                                                      2    2     2     1  0
                                                    ó ˆ ó ˆ ó ˆ        0  1                    (7:23)
                                                            y
                                                                 z
                                                      x
                             We let ó z be represented by the simplest 2 3 2 matrix with eigenvalues 1 and
                             ÿ1

                                                                1    0
                                                         ó z ˆ                                 (7:24)
                                                                0   ÿ1
                             To ®nd ó x and ó y , we note that

                                                   a  b    1    0        a  ÿb
                                                                    ˆ
                                                   c  d    0   ÿ1        c  ÿd
                             and

                                                  1   0     a   b        a    b
                                                                   ˆ
                                                  0  ÿ1     c   d       ÿc ÿd
                             Since ó x and ó y anticommute with ó z as represented in (7.24), we must have

                                                      a   ÿb        ÿa   ÿb
                                                               ˆ
                                                      c  ÿd          c    d
                             so that a ˆ d ˆ 0 and both ó x and ó y have the form

                                                               0  b
                                                               c  0
                             Further, we have from (7.23)

                                                   0   b    0  b       bc   0        1  0
                                        2    2
                                      ó ˆ ó ˆ                      ˆ             ˆ
                                        x    y     c   0    c  0        0   bc       0  1
   204   205   206   207   208   209   210   211   212   213   214