Page 214 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 214

7.4 Spin±orbit interaction                   205
                                    2
                        motion, but S is. Since J is ®xed in direction and magnitude, both J and J 2
                        are constants of motion.
                                                         ^
                                                      ^
                          If we form the cross product J 3 J and substitute equations (7.36), (5.11),
                        and (7.3), we obtain
                            ^   ^    ^   ^     ^   ^     ^   ^     ^   ^      ^     ^     ^
                            J 3 J ˆ (L ‡ S) 3 (L ‡ S) ˆ (L 3 L) ‡ (S 3 S) ˆ i"L ‡ i"S ˆ i"J
                                                            ^
                                                    ^
                                                                ^
                                               ^
                        where the cross terms (L 3 S) and (S 3 L) cancel each other. Thus, the
                                ^
                        operator J obeys equation (5.12) and the quantum-mechanical treatment of
                                                                                         ^
                                                                              ^ ^
                        Section 5.2 applies to the total angular momentum. Since J x , J y , and J z each
                                                                                     ^
                                      ^ 2
                        commute with J but do not commute with one another, we select J z and seek
                        the simultaneous eigenfunctions jnlsjm j i of the set of mutually commuting
                                 ^   2  2   2     ^
                        operators H, L , S , J , and J z
                            ^
                            Hjnlsjm j iˆ E n jnlsjm j i                                  (7:37a)
                            ^ 2                 2                                        (7:37b)
                            L jnlsjm j iˆ l(l ‡ 1)" jnlsjm j i
                            ^ 2                  2                                       (7:37c)
                            S jnlsjm j iˆ s(s ‡ 1)" jnlsjm j i
                            ^ 2                 2
                            J jnlsjm j iˆ j(j ‡ 1)" jnlsjm j i                           (7:37d)
                            ^
                            J z jnlsjm j iˆ m j "jnlsjm j i,  m j ˆÿj, ÿj ‡ 1, ... , j ÿ 1, j  (7:37e)
                        From the expression
                                    ^            ^    ^
                                    J z jnlsjm j iˆ (L z ˆ S z )jnlsjm j iˆ (m ‡ m s )"jnlsjm j i
                        obtained from (7.36), (5.28b), and (7.5), we see that

                                                     m j ˆ m ‡ m s                        (7:38)
                        The quantum number j takes on the values
                                          l ‡ s, l ‡ s ÿ 1, l ‡ s ÿ 2, ... , jl ÿ sj
                        The argument leading to this conclusion is somewhat complicated and may be
                                       3
                        found elsewhere. In the application being considered here, the spin s equals  1
                                                                                               2
                        and the quantum number j can have only two values
                                                               1
                                                        j ˆ l                             (7:39)
                                                               2
                        The resulting vectors J are shown in Figure 7.2.
                                            ^ : ^
                          The scalar product L S in equation (7.33) may be expressed in terms of
                                                  ^
                        operators that commute with H by
                           ^ : ^   1 ^   ^ : ^    ^    1^ : ^  1^ : ^   1 ^ 2  ^ 2  ^ 2   (7:40)
                           L S ˆ (L ‡ S) (L ‡ S) ÿ L L ÿ S S ˆ (J ÿ L ÿ S )
                                   2                   2       2        2

                        3  B. H. Brandsen and C. J. Joachain (1989) Introduction to Quantum Mechanics (Addison Wesley Longman,
                         Harlow, Essex), pp. 299, 301; R. N. Zare (1988) Angular Momentum (John Wiley & Sons, New York), pp.
                         45±8.
   209   210   211   212   213   214   215   216   217   218   219