Page 276 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 276
10.1 Nuclear structure and motion 267
= á ÷ø ø= á ÷ ÷= á ø
:
2
2
2
= ÷ø ø= ÷ ÷= ø 2= á ÷ = á ø
á
á
á
Therefore, we obtain
Ù
X 1
^
2
T Q [÷ ë (Q)ø ë (r, Q)] ÿ" 2 = [÷ ë (Q)ø ë (r, Q)]
á
2M á
á1
^
^
ø ë (r, Q)T Q ÷ ë (Q) ÷ ë (Q)T Q ø ë (r, Q)
Ù
X 1
:
ÿ " 2 = á ÷ ë (Q) = á ø ë (r, Q) (10:14)
M á
á1
Substitution of equation (10.14) into (10.13) yields
X
^ ^
[T Q å k (Q) ÿ E]÷ k (Q) (c kë Ë kë )÷ ë (Q) 0 (10:15)
ë
^
where the coef®cients c kë (Q) and the operators Ë kë are de®ned by
^
c kë (Q) ø (r, Q)T Q ø ë (r, Q)dr (10:16)
k
Ù
X 1
^
:
Ë kë ÿ" 2 ø (r, Q)= á ø ë (r, Q)dr = á (10:17)
M á k
á1
and equation (10.7) has been used. Since we have assumed that the electronic
eigenfunctions ø k (r, Q) are known for all values of the parameters Q, the
^
coef®cients c kë (Q) and the operators Ë kë may be determined. The set of
coupled equations (10.15) for the functions ÷ k (Q) is exact.
^
The integral I contained in the operator Ë kk is
I ø (r, Q)= á ø k (r, Q)dr
k
For stationary states, the eigenfunctions ø k (r, Q) may be chosen to be real
functions, so that this integral can also be written as
1
2
I = á [ø k (r, Q)] dr
2
According to equation (10.7), the integral I vanishes and, therefore, we have
^
Ë kk 0.
We now write equation (10.15) as
X
^ ^
[T Q U k (Q) ÿ E]÷ k (Q) (c kë Ë kë )÷ ë (Q) 0 (10:18)
ë(6k)
where U k (Q) is de®ned by