Page 276 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 276

10.1 Nuclear structure and motion               267
                                          = á ÷ø ˆ ø= á ÷ ‡ ÷= á ø

                                                                        :
                                           2
                                                             2
                                                     2
                                          = ÷ø ˆ ø= ÷ ‡ ÷= ø ‡ 2= á ÷ = á ø
                                                             á
                                           á
                                                     á
                        Therefore, we obtain
                                                      Ù
                                                     X    1
                             ^
                                                               2
                             T Q [÷ ë (Q)ø ë (r, Q)] ˆÿ" 2    = [÷ ë (Q)ø ë (r, Q)]
                                                               á
                                                         2M á
                                                     áˆ1
                                                                         ^
                                                         ^
                                               ˆ ø ë (r, Q)T Q ÷ ë (Q) ‡ ÷ ë (Q)T Q ø ë (r, Q)
                                                       Ù
                                                      X   1
                                                                     :
                                                 ÿ " 2       = á ÷ ë (Q) = á ø ë (r, Q)  (10:14)
                                                         M á
                                                      áˆ1
                        Substitution of equation (10.14) into (10.13) yields
                                                         X
                                 ^                                 ^
                                [T Q ‡ å k (Q) ÿ E]÷ k (Q) ‡  (c kë ‡ Ë kë )÷ ë (Q) ˆ 0  (10:15)
                                                          ë
                                                                   ^
                        where the coef®cients c kë (Q) and the operators Ë kë are de®ned by
                                             …
                                                       ^

                                    c kë (Q)   ø (r, Q)T Q ø ë (r, Q)dr                  (10:16)
                                                k
                                                  Ù     …
                                                 X    1
                                       ^
                                                                                :

                                      Ë kë  ÿ"  2         ø (r, Q)= á ø ë (r, Q)dr = á   (10:17)
                                                     M á   k
                                                 áˆ1
                        and equation (10.7) has been used. Since we have assumed that the electronic
                        eigenfunctions ø k (r, Q) are known for all values of the parameters Q, the
                                                             ^
                        coef®cients c kë (Q) and the operators Ë kë may be determined. The set of
                        coupled equations (10.15) for the functions ÷ k (Q) is exact.
                                                              ^
                          The integral I contained in the operator Ë kk is
                                                  …

                                              I   ø (r, Q)= á ø k (r, Q)dr
                                                     k
                        For stationary states, the eigenfunctions ø k (r, Q) may be chosen to be real
                        functions, so that this integral can also be written as
                                                        …
                                                     1
                                                                   2
                                                 I ˆ = á [ø k (r, Q)] dr
                                                     2
                        According to equation (10.7), the integral I vanishes and, therefore, we have
                        ^
                        Ë kk ˆ 0.
                          We now write equation (10.15) as
                                                         X
                                ^                                  ^
                                [T Q ‡ U k (Q) ÿ E]÷ k (Q) ‡  (c kë ‡ Ë kë )÷ ë (Q) ˆ 0  (10:18)
                                                         ë(6ˆk)
                        where U k (Q) is de®ned by
   271   272   273   274   275   276   277   278   279   280   281