Page 246 - Phase Space Optics Fundamentals and Applications
P. 246

Radiometry, Wave Optics, and Spatial Coherence     227


               variables (x s1 ,y s1 , 0), (x s2 ,y s2 , 0), for which we introduce average and
               difference variables:
                      1                  1
                  x s ≡  (x s1 + x s2 ),  y s ≡  (y s1 + y s2 ),  x s12 ≡ (x s1 − x s2 ),
                      2                  2
                                     y s12 ≡ (y s1 − y s2 )
                 Next we introduce vectors   s ≡ ˆ ix s + ˆ jy s ,  r s12 ≡ ˆ ix s12 + ˆ jy s12 , and
                                        r
                                                   1
                                               r
               we can also have combination vectors   s +  r s12 = ˆ ix s1 + ˆ jy s1 and  r s −
                                                   2
                1
                   r
                2 s12 = ˆ ix s2 + ˆ jy s2 . On the receiving side use,  r ≡ ˆ ix + ˆ jy +
                ˆ
               kz and the integration over the area elements dx s1 dy s1 dx s2 dy s2 =
                                  2
                                     2
               dx s dy s dx s12 dy s12 = d  r s d  r s12 . The unit normal vector is defined by
                                           ˆ
                            ˆ
                ˆ n = ( ˆ ix + ˆ jy + kz)/r = ˆ ip+ ˆ jq +km, where p, q, and m are the actual
               direction cosines. Thus, (xx s12 + yy s12 )/r = ˆ n · r s12 .
                 Armed with this symbolic notation, we are now ready to proceed
               with the formulation of radiometry for wave optics. In the computa-
               tion of Eq. (7.29), we need to define the spatial coherence function
                                                          ∗
                        (x s1 ,y s1 ,x s2 ,y s2 , 0,  ) =  (x s1 ,y s1 , 0,  )  (x s2 ,y s2 , 0,  ) ,
                                        	   7
                       1        1                    1
                    r s +  r s12 ,  r s −  r s12 , 0,    =      s +  r s12 , 0,
                                                 r
                       2        2                    2
                                                              	8
                                                       1
                                            ×   ∗    r s −  r s12 , 0,    (7.30)
                                                       2
                 The angular brackets denote the ensemble average. The coherence
               function can describe a coherent, partially coherent, or noncoherent
               input field in the z = 0 plane. In the computation, we can use the av-
               erage and difference variables, as done in Eq. (7.30). The total spectral
               radiant power of Eq. (7.29) may be expressed as
                                ⎡

                                        z
                                   1      2           1        1
                            2
                                                           r
                                                  r
                 ( ) =     r d	 ⎣  2 2             s +  r s12 ,   s −  r s12 , 0,
                         1/2        r  r              2        2
                                            A
                                                     ⎤

                                xx s12 + yy s12  2  2
                                              r
                                                  r
                       ×exp −ik             d   s d   s12  ⎦        (7.31)
                                     r
                 This expression can be regrouped in the following way,
                                       ⎡

                           2             m            1        1
                                                           r
                                                  r
                            r
                 ( ) =    d   s   md	 ⎣   2        s +  r s12 ,   s −  r s12 , 0,
                                1/2                   2        2
                        A                    A
                                           ⎤
                                        2
                                  r     r  ⎦                        (7.32)
                      × exp −ik ˆ n ·  s12 d   s12
   241   242   243   244   245   246   247   248   249   250   251