Page 26 - Phase Space Optics Fundamentals and Applications
P. 26

Wigner Distribution in Optics   7


                                     Γ(r + r , r − r )
                                          1
                                                1
                                          2     2




                            W(r,q)                     A(r,q )







                                     Γ(q + q , q − q )
                                     −
                                          1
                                                 1
                                          2      2
               FIGURE 1.1 Schematic representation of the cross-spectral density  , its
               spatial Fourier transform ¯  , the Wigner distribution W, and the ambiguity
               function A, on a rectangle.

               introduced in optics by Papoulis. 19  The ambiguity function is treated
               in greater detail in Chap. 2 by Jean-Pierre Guigay; in this chapter we
               concentrate on the Wigner distribution.

               1.3.2 Some Basic Examples Again
               Let us return to our basic examples. The space behavior f (r)or
                                                   ¯
                (r 1 , r 2 ), the spatial-frequency behavior f (q)or ¯  (q , q ), and the
                                                             1  2
               Wigner distribution W(r, q) of (1) a point source, (2) a plane wave,
               (3) a spherical wave, (4) an incoherent light field, and (5) a spatially
               stationary light field are represented in Table 1.1.

                                          ¯
                Example*   f (r) or  (r 1 , r 2 )  f (q) or ¯  (q , q )  W(r, q)
                                                    1  2
                                                  t
                   (1)     (r − r o )    exp(−i2 r q)       (r − r o )
                                                  o
                                  t
                   (2)    exp(i2 q r)     (q − q )          (q − q )
                                  o            o                 o
                                t
                   (3)    exp(i r Hr)    [det(−iH)] −1/2    (q − Hr)
                                                   t
                                           exp(−i q H −1 q)
                   (4)    p(r 1 )  (r 1 − r 2 )  ¯ p(q − q )  p(r)
                                            1
                                                 2
                   (5)    s(r 1 − r 2 )   ¯ s(q )  (q − q )  ¯ s(q)
                                            1   1    2
               ∗ (1) Point source, (2) plane wave, (3) spherical wave, (4) incoherent light,
               and (5) spatially stationary light.
               TABLE 1.1 Wigner Distribution of Some Basic Examples
   21   22   23   24   25   26   27   28   29   30   31