Page 398 - Phase Space Optics Fundamentals and Applications
P. 398

Phase Space in Ultrafast Optics    379


               possible to find direct inversions that are robust. In both cases, there
               are well-established practical methods by which the ultrashort pulse
               may be completely characterized.
                 The work of Christophe Dorrer was partially supported by the
               U.S. DOE Office of Inertial Confinement Fusion under Cooperative
               Agreement No. DE-FC52-08NA28302, the University of Rochester,
               and the New York State Energy Research and Development Authority.
               The support of DOE does not constitute an endorsement by DOE of
               the views expressed in this chapter.
                 Ian Wamsley was supported by EPSRC (ER/S24015/01 and
               EP/D503248/1) and the Royal Society, through the Wolfson Research
               Merit Award scheme.




          References
                 1. G. Steinmeyer, “A review of ultrafast optics and optoelectronics,” J. Opt. A:
                  Pure Appl. Opt. 5: 1–15 (2003).
                 2. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband fem-
                  tosecond lasers,” IEEE J. Quantum Electron. 30: 1100–1114 (1994).
                 3. S. Backus, C. G. Durfee, III, M. M. Murnane, and H. C. Kapteyn, “High power
                  ultrafast lasers,” Rev. Sci. Instrum. 69: 1207–1223 (1998).
                 4. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev.
                  Sci. Instrum. 74: 1–18 (2003).
                 5. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology, Springer,
                  New York, 2005.
                 6. A. Scrinzi, M. Yu Ivanov, R. Kienberger, and D. M. Villeneuve, “Attosecond
                  physics,” J. Phys. B: At. Mol. Opt. Phys. 39: 1–37 (2006).
                 7. L. Mandel, “Interpretation of instantaneous frequencies,” Am. J. Phys. 42: 840–
                  846 (1974).
                 8. P. J. Loughlin and B. Tacer, “Comments on the interpretation of instantaneous
                  frequency,” IEEE Signal Process. Lett. 4: 123–125 (1997).
                 9. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1996.
                10. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller,
                  “Carrier-envelope offset phase control: A novel concept for absolute optical
                  frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69:
                  327–332 (1999).
                11. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1980.
                12. S. A. Ponomarenko, G. P. Agrawal, and E. Wolf, “Energy spectrum of a non-
                  stationary ensemble of pulses,” Opt. Lett. 29: 394–396 (2004).
                13. K. H. Brenner and J. Ojeda-Casta˜neda, “Ambiguity function and Wigner dis-
                  tribution function applied to partially coherent imagery,” Opt. Acta 31: 213–223
                  (1984).
                14. K. H. Brenner and K. Wodkiewicz, “The time-dependent physical spec-
                  trum of light and the Wigner distribution function,” Opt. Comm. 43: 103–106
                  (1982).
                15. C. A. Hirlimann and J.-F. Morhange, “Wavelet analysis of short light pulses,”
                  Appl. Opt. 31: 3263 (1992).
                16. J. Paye, “The chronocyclic representation of ultrashort light pulses,” IEEE J.
                  Quantum Electron. 28: 2262–2273 (1992).
                17. S. Mukamel, C. Ciordas-Ciurdariu, and V. Khidekel, “Wigner spectrograms for
                  femtosecond pulse-shaped heterodyne and autocorrelation measurements,”
                  IEEE J. Quantum Electron. 32: 1278–1288 (1996).
   393   394   395   396   397   398   399   400   401   402   403