Page 398 - Phase Space Optics Fundamentals and Applications
P. 398
Phase Space in Ultrafast Optics 379
possible to find direct inversions that are robust. In both cases, there
are well-established practical methods by which the ultrashort pulse
may be completely characterized.
The work of Christophe Dorrer was partially supported by the
U.S. DOE Office of Inertial Confinement Fusion under Cooperative
Agreement No. DE-FC52-08NA28302, the University of Rochester,
and the New York State Energy Research and Development Authority.
The support of DOE does not constitute an endorsement by DOE of
the views expressed in this chapter.
Ian Wamsley was supported by EPSRC (ER/S24015/01 and
EP/D503248/1) and the Royal Society, through the Wolfson Research
Merit Award scheme.
References
1. G. Steinmeyer, “A review of ultrafast optics and optoelectronics,” J. Opt. A:
Pure Appl. Opt. 5: 1–15 (2003).
2. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband fem-
tosecond lasers,” IEEE J. Quantum Electron. 30: 1100–1114 (1994).
3. S. Backus, C. G. Durfee, III, M. M. Murnane, and H. C. Kapteyn, “High power
ultrafast lasers,” Rev. Sci. Instrum. 69: 1207–1223 (1998).
4. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev.
Sci. Instrum. 74: 1–18 (2003).
5. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology, Springer,
New York, 2005.
6. A. Scrinzi, M. Yu Ivanov, R. Kienberger, and D. M. Villeneuve, “Attosecond
physics,” J. Phys. B: At. Mol. Opt. Phys. 39: 1–37 (2006).
7. L. Mandel, “Interpretation of instantaneous frequencies,” Am. J. Phys. 42: 840–
846 (1974).
8. P. J. Loughlin and B. Tacer, “Comments on the interpretation of instantaneous
frequency,” IEEE Signal Process. Lett. 4: 123–125 (1997).
9. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1996.
10. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller,
“Carrier-envelope offset phase control: A novel concept for absolute optical
frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69:
327–332 (1999).
11. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1980.
12. S. A. Ponomarenko, G. P. Agrawal, and E. Wolf, “Energy spectrum of a non-
stationary ensemble of pulses,” Opt. Lett. 29: 394–396 (2004).
13. K. H. Brenner and J. Ojeda-Casta˜neda, “Ambiguity function and Wigner dis-
tribution function applied to partially coherent imagery,” Opt. Acta 31: 213–223
(1984).
14. K. H. Brenner and K. Wodkiewicz, “The time-dependent physical spec-
trum of light and the Wigner distribution function,” Opt. Comm. 43: 103–106
(1982).
15. C. A. Hirlimann and J.-F. Morhange, “Wavelet analysis of short light pulses,”
Appl. Opt. 31: 3263 (1992).
16. J. Paye, “The chronocyclic representation of ultrashort light pulses,” IEEE J.
Quantum Electron. 28: 2262–2273 (1992).
17. S. Mukamel, C. Ciordas-Ciurdariu, and V. Khidekel, “Wigner spectrograms for
femtosecond pulse-shaped heterodyne and autocorrelation measurements,”
IEEE J. Quantum Electron. 32: 1278–1288 (1996).