Page 399 - Phase Space Optics Fundamentals and Applications
P. 399
380 Chapter Eleven
18. V. J. Pinto-Robledo and T. A. Hall, “Chronocyclic description of laser pulse
compression,” Opt. Comm. 125: 348 (1996).
19. J.-P. Likforman, M. Joffre, and V. Thierry Mieg, “Measurement of photon echoes
by use of femtosecond Fourier-transform spectral interferometry,” Opt. Lett. 22:
1104–1106 (1997).
20. D. Dragoman and M. Dragoman, “Phase space characterization of solitons
with the Wigner transform,” Opt. Comm. 137: 437–444 (1997).
21. J. Aza˜na and M. A. Muriel, “Reconstruction of fiber grating period profiles
by use of Wigner–Ville distributions and spectrograms,” J. Opt. Soc. Am. A 17:
2496–2505 (2000).
22. J.-H. Kim, D. G. Lee, H. J. Shin, and C. H. Nam, “Wigner time-frequency dis-
tribution of high-order harmonics,” Phys. Rev. A 63: 063403 (2001).
23. M. B. Gaarde, “Time-frequency representations of high order harmonics,” Opt.
Express 8: 529–536 (2001).
24. D. Dragoman and M. Dragoman, “Time-frequency signal processing of tera-
hertz pulses,” Appl. Opt. 43: 3848–3853 (2004).
25. J. Aza˜na, “Time-frequency (Wigner) analysis of linear and nonlinear pulse
propagation in optical fibers,” EURASIP J. Appl. Signal Process. 10: 1554–1565
(2005).
26. R. N. Graf and A. Wax, “Temporal coherence and time-frequency distributions
in spectroscopic optical coherence tomography,” J. Opt. Soc. Am. A 24: 2186–
2195 (2007).
27. J. Ojeda-Casta˜neda, J. Lancis, C. M. G´omez-Sarabia, V. Torres-Company, and
P. Andr´es, “Ambiguity function analysis of pulse train propagation: Applica-
tions to temporal Lau filtering,” J. Opt. Soc. Am. A 24: 2268–2273 (2007).
28. S. Fechner, F. Dimler, T. Brixner, G. Gerber, and D. J. Tannor, “The von Neumann
picture: A new representation for ultrashort laser pulses,” Opt. Express 15:
15387–15401 (2007).
29. A. Rodenberg, S. Fechner, F. Dimler, and D. J. Tannor, “Experimental imple-
mentation of ultrashort laser pulses in the von Neumann picture,” Appl. Phys.
B 93: 763–772 (2008).
30. L. Cohen, Time-Frequency Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1995.
31. R. Gase, “Time-dependent spectrum of linear optical systems,” J. Opt. Soc. Am.
B 8: 850–859 (1991).
32. U. Leonhardt, Measuring the Quantum State of Light, Cambridge University
Press, Cambridge, 1997.
33. M. E. Casida, J. E. Harriman, and J. L. Anchell, “The Husimi function for
electron distributions,” Int. J. Quantum Chem. 32: 435–456 (2004).
34. H. M. Ozatkas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform
with Applications in Optics and Signal Processing, Wiley, Chichester, 2001.
35. D. Dragoman, “Applications of the Wigner distribution function in signal pro-
cessing,” EURASIP J. Appl. Signal Process. 2005: 1520–1534 (2005).
36. P. Tournois, J.-L. Vernet, and G. Bienvenu, “Sur l’analogie optique de cer-
tains montages ´electroniques: formation d’images temporelles de signaux
´ electriques,” C. R. Acad. Sci. Paris 267: 375–378 (1968).
37. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE
J. Quantum Electron. 30: 1951–1963 (1994).
38. A. V. Gitin, “Applications of the Wigner function and matrix optics to describe
variations in the shape of ultrashort laser pulses propagating through linear
optical systems,” IEEE J. Quantum Electron. 36: 376–382 (2006).
39. M.T.Kaufman,W.C.Banyai,A.A.Godil,andD.M.Bloom,“Time-to-frequency
converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64: 270–
272 (1994).
40. I. P. Christov, “Theory of a time telescope,” Opt. Quantum Electron. 22: 473–480
(1990).
41. C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating
103X magnification of femtosecond waveforms,” Opt. Lett. 24: 783–785 (1999).