Page 80 - Phase Space Optics Fundamentals and Applications
P. 80

Ambiguity Function in Optical Imaging    61


                4. K. A. Nugent, “X-ray noninterferometric phase imaging: A unified picture,”
                  J. Opt. Soc. Am. A 24: 536–547 (2007).
                5. A. Semichaevsky and M. Testorf, “Phase-space interpretation of deterministic
                  phase retrieval,” J. Opt. Soc. Am. A 21: 2173–2179 (2004).
                6. J. P. Guigay, “Fourier transform analysis of Fresnel diffraction patterns and
                  in-line holograms,” Optik 49: 121–125 (1977).
                7. J. P. Guigay, “Analyse spectrale (frequences spatiales) d’une image de diffrac-
                  tion de Fresnel,” C. R. Acad. Sc. Paris, 284B: 193–196 (1977).
                8. K. J. Hanszen, “In-line-holographische Erfahrungen mit Radialgittern als Testo-
                  bjekten in lichtoptischen Modellanordungen f¨ur das Elektronenmikroskop,”
                  Optik 36: 41–54 (1972).
                9. R. W. Wade, “Spectral analysis of holograms and reconstructed images,” Optik
                  40: 201 (1974).
               10. M. V. Klein and T. E. Furtak, Optics, 2d ed., John Wiley & Sons, New York, 1986.
                11. J. P. Guigay, “The ambiguity function in diffraction and isoplanatic imaging by
                  partially coherent beams,” Opt. Comm. 26: 136–138 (1978).
               12. K. Dutta and J. W. Goodman, “Reconstruction of images of partially coherent
                  objects from samples of mutual intensity,” J. Opt. Soc. Am. 67(6): 796–803 (1977).
               13. J. Ojeda-Casta˜neda and E. Sicre, “Bilinear systems: Wigner distribution function
                  and ambiguity function representations,” Optica Acta 31(3): 255–260 (1984).
               14. M. Born and E. Wolf, “Principles of Optics,” 7th ed., Cambridge University
                  Press, 1999, Chapt. 2.
               15. K-H. Brenner, A. Lohmann, and J. Ojeda-Casta˜neda, “The ambiguity function
                  as a display of the OTF,” Opt. Comm. 44(5): 323–326 (1983).
               16. K. H. Brenner and J. Ojeda-Casta˜neda, “Ambiguity function and Wigner dis-
                  tribution function applied to partially coherent imagery,” Optica Acta 31(2):
                  213–223 (1984).
               17. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front
                  coding,” Appl. Opt. 34(11): 1859–1866 (1995).
               18. A. R. Fitzgerrell, E. R. Dowski, and W. T. Cathey, “Defocus transfer function for
                  circularly symmetric pupils,” Appl. Opt. 36(23): 5796–5804 (1997).
               19. A. Castro and J. Ojeda-Casta˜neda, “Asymmetric phase masks for extended
                  depth of field,” Appl. Opt. 43(17): 3474–3479 (2004).
               20. J. Ojeda-Casta˜neda and L. R. Berriel-Valdos, “Ambiguity function as a design
                  tool for high focal depth,” Appl. Opt. 27: 790–795 (1988).
               21. J. Ojeda-Casta˜neda, J. E. A. Landgrave, and H. M. Escamilla, “Annular phase-
                  only mask for high focal depth,” Opt. Lett. 30: 1647–1649 (2005).
               22. A. Castro, J. Ojeda-Casta˜neda, and A. Lohmann, “Bow-tie effect: differential
                  operator,” Appl. Opt. 45(30): 7878–7884 (2006).
               23. Q. Yang, L. Liu, and J. Sun, “Optimized phase pupil masks for extended depth
                  of field,” Opt. Comm. 272: 56–66 (2007).
               24. N. Caron and Y. Sheng, “Polynomial phase masks for extending the depth of
                  field of a microscope,” Applied Optics, feature issue on phase-space representa-
                  tions in Optics, 47(22): E39–E41 (2008).
               25. J. Ojeda-Casta˜neda, P. Andr´es, and E. Montes, “Phase-space representation of
                  the Strehl ratio: Ambiguity function,” J. Opt. Soc. Am. 4(2): 313–317 (1987).
               26. C. J. R. Sheppard and K. G. Larkin, “Focal shift, optical transfer function and
                  phase-space representations,” J. Opt. Soc. Am. A 17(4): 772–779 (2000).
               27. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruc-
                  tion using phase-space tomography,” Phys. Rev. Lett. 72(8): 1137–1140 (1994).
               28. J. Tu and S. Tamura, “Wave field determination using tomography of the am-
                  biguity function,” Phys. Rev. E. 55(2): 1946–1949 (1997).
               29. J. Tu and S. Tamura, “Analytic relation for recovering the mutual intensity by
                  means of intensity information,” J. Opt. Soc. Am. 15(1): 202–206 (1998).
               30. D. Dragoman, M. Dragoman, and K. H. Brenner, “Tomographic amplitude and
                  phase recovery of vertical-cavity surface-emitting lasers by use of the ambiguity
                  function,” Opt. Lett. 27(17): 1519–1521 (2002).
   75   76   77   78   79   80   81   82   83   84   85