Page 70 - Physical chemistry eng
P. 70

3.1 THE MATHEMATICAL PROPERTIES OF STATE FUNCTIONS   47


               EXAMPLE PROBLEM 3.1

               a. Calculate
                                                     0f             0f
                                                   0a   b         0a   b
                                     2
                                            2
                       0f     0f    0 f     0 f   £  0x  y≥      £  0y  x ≥
                      a   b , a  b , a  b , a  b ,          , and
                       0x  y  0y  x  0x 2  y  0y 2  x  0y  x        0x    y
                                         x
                 for the function f(x, y) = ye + xy + xln y .
              b. Determine if f(x, y)  is a state function of the variables x and y.
               c. If f(x, y)  is a state function of the variables x and y, what is the total differential df?

              Solution
                   0f                         0f              x
               a. a  b = ye + y + ln y,      a   b = e + x +
                                                      x
                            x
                   0x  y                      0y  x           y
                    2
                                                2
                   0 f                         0 f        x
                 a    b = ye ,                a   b =-
                            x
                   0x 2  y                     0y 2  x   y 2
                     0f                          0f
                   0a  b                      0 a  b
                 £   0x  y ≥           1     £   0y  ≥             1
                                x
                             = e + 1 +  ,           x   = e + 1 +
                                                           x
                     0y    x           y         0x    y           y
              b. Because we have shown that
                                       0f              0f
                                     0a   b         0 a  b
                                    £  0x  y ≥   £     0y  ≥
                                               =          x
                                       0y    x        0x     y
                 f(x, y)  is a state function of the variables x and y. Generalizing this result, any
                 well-behaved function that can be expressed in analytical form is a state function.
               c. The total differential is given by

                                            0f         0f
                                      df = a  b  dx + a   b  dy
                                            0x  y      0y  x
                                                              x
                                   x
                                                       x
                                = (ye + y + ln y)dx + ae + x +  bdy
                                                              y
                 Two other important results from differential calculus will be used frequently.
              Consider a function z = f(x, y)  that can be rearranged to x = g(y, z)  or y = h(x, z) .
              For example, if P = nRT>V , then V = nRT>P  and T = PV>nR . In this case

                                           0x       1
                                          a  b =                               (3.6)
                                           0y  z  a  0y b
                                                   0x  z
              The cyclic rule will also be used:

                                      0x    0y    0z
                                     a   b  a  b  a  b =-1                     (3.7)
                                      0y  z  0z  x  0x  y
              It is called the cyclic rule because x, y, and z in the three terms follow the orders x, y, z;
              y, z, x; and z, x, y. Equations (3.6) and (3.7) can be used to reformulate Equation (3.3)
              shown next below:
                                          0P          0P
                                   dP = a    b dT + a    b dV
                                          0T  V       0V  T
   65   66   67   68   69   70   71   72   73   74   75