Page 173 - Pipelines and Risers
P. 173

146                                                              Chapter IO


           where:
                                ,...,
                ~(i)=cos(wt+~),n=1.2,3

           and
                   =
                ~(x) c, cosh(s, x) + c, sinh(s,x) + c, cos(s,x) + c, si@,   x)










           The boundary conditions for a beam with end springs may be expressed as:
               BC 1:  EI-=~,-   dv(0)
                       &(O)
                        dx      dx
                       dZW)
                BC 2:  EIT=-k,- dW)
                        dx      dx
                BC 3:  T=-EI-=k,,y1(0) d3m)
                       dx     dx’
                BC4: T--EI-=-~,~~(o
                             d’W)
                      dW)
                       dx     dx’
           where:
                    translational spring stiffness, left end of beam
                k,,
                    translational spring stiffness, right end of beam
                k,%
                    rotational spring stiffness, left end of beam
                k,,
                    rotational spring stiffness, right end of beam
                k,
                I   Length of pipe

           Applying the boundary conditions in the general solutions, 4 linear equations are obtained
           from which o is solved as frequency determinant. When  ois known the four coefficients
           except for an arbitrary factor can be determined.

           The frequency determinant may be derived as:
   168   169   170   171   172   173   174   175   176   177   178