Page 146 - Plant-Based Remediation Processes
P. 146
136 S. Chatterjee et al.
Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S,
Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular
farming. Proc Natl Acad Sci USA 96:5973–5977
Glick BR (2004) Teamwork in phytoremediation. Nat Biotechnol 22:526–527
Herawati N, Susuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper and zinc levels in
rice and soil of Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol
64:33–39
Hutton M, Symon C (1986) The quantities of cadmium, lead, mercury and arsenic entering the U.K.
environment from human activities. Sci Total Environ 57:129–150
INSA, A Position Paper (2011) Hazardous metals and minerals pollution in India. http://insaindia.
org/pdf/Hazardous_Metals.pdf. Accessed 30 Aug 2012
Jung MC (2008) Heavy metal concentrations in soils and factors affecting metal uptake by plants
in the vicinity of a Korean Cu-W Mine. Sensors 8:2413–2423
Kadlec RH, Knight RI (1996) Treatment wetlands. CRC, Boca Raton, FL
Kalay M, Canli M (2000) Elimination of essential (Cu, Zn) and non-essential (Cd, Pb) metals from
tissues of a freshwater fish Tilapia zilli. Turk J Zool 24:429–436
Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of
soils polluted with heavy metals. Biotechnol Adv 28:61–69
Ke HY, Sun JG, Feng XZ, Czako M, Marton L (2001) Differential mercury volatilization by
tobacco organs expressing a modified bacterial merA gene. Cell Res 11:231–236
Khan AG, Kuek C, Chaudhry TM, Koo CS, Hayes W (2000) Role of plants, mycorrhizae and
phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207
Kidd P, Barcelo ´ J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso
C (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation.
Environ Exp Bot 67:243–259
Korda A, Santas P, Tenente A, Santas R (1997) Petroleum hydrocarbon bioremediation: sampling
and analytical techniques, in situ treatments and commercial microorganisms currently used.
Appl Microbiol Biotechnol 48:677–689
Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria
affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44
Lakatos G, Kiss M, Mezzaros I (1999) Heavy metal content of common reed (Phragmites
australis/Cav./Trin. ex Steudel) and its periphyton in Hungarian shallow standing waters.
Hydrobiologia 415:47–53
Landmeyer JE (2011) Introduction to phytoremediation of contaminated groundwater. Springer,
Germany
Landmeyer JE, Bradley PM, Trego DA, Hale KG, Haas JE (2010) MTBE, TBA, and TAME
attenuation in diverse hyporheic zones. Ground Water 48:30–41
Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal
interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:5
Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2002) Isolation,
characterization, and identification of bacteria associated with the zinc hyperaccumulator
Thlaspi caerulescens subsp. calaminaria. Int J Phytoremediation 4:101–115
Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of
Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20
Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation.
Nat Rev Microbiol 1:35–44
Lu D, Li G, Valladares GS, Batistella M (2004) Mapping soil erosion risk in Rondonia,
Brazilian Amazonia: using rusle, remote sensing and GIS. Land Degrad Dev 15:499–512
McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils.
Curr Opin Biotechnol 14:277–282
McLean JE, Bledsoe BE (1992) Behavior of metals in soils (EPA Ground Water Issue) EPA/540/
S-92/018