Page 29 - Plant-Based Remediation Processes
P. 29
16 S. Chatterjee et al.
Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin
Biotechnol 20:225–230
Khade HW, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal-
contaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India.
Water Air Soil Pollut 202:45–56
Kidd P, Barcelob J, Bernal MP, Navari-Izzo F, Poschenriederb C, Shileve S, Clemente R,
Monterroso C (2009) Trace element behaviour at the root–soil interface: implications in
phytoremediation. Environ Exp Bot 67:243–259
Kotrba P, Macek T, Ruml T (1999) Heavy metal-binding peptides and proteins in plants. Collect
Czech Chem Commun 64:1057–1086
Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin
Biotechnol 16:133–141
Landmeyer JE (2011) Introduction to phytoremediation of contaminated groundwater. Springer,
London. ISBN 978-94-007-1956-9
LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP (2004) Overexpression of
selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium toler-
ance and accumulation. Plant Physiol 135:377–383
Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of
Arabidopsis phytochelatin synthase paradoxycally leads to hypersensitivity to Cd stress.
Plant Physiol 131:656–663
Li YM, Chaney RL (1998) Case studies in the field–Industrial sites: phytostabilization of zinc
smelter contaminated sites–the Palmerton case. In: Vangronsveld J, Cunningham SD (eds)
Metal-contaminated soils. In situ inactivation and phytorestoration. Springer, Berlin
Lone MI, He ZH, Stoffella J, Yang X (2008) Phytoremediation of heavy metal polluted soils and
water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220
Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation.
Nat Rev Microbiol 1:35–44
Lu L, Tian S, Yang X, Wang X, Brown P, Li T (2008) Enhanced root-to-shoot translocation of
cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213
Luo S, Wan Y, Xiao X, Guo H, Chen L, Xi Q, Zeng G, Liu C, Chen J (2011) Isolation and
characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum
nigrum L and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644
Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS (2007) Coupling two
mercury resistance genes in eastern cottonwood enhances the processing of organomercury.
Plant Biotechnol J 5:254–262
Ma JF, Nomoto K (1996) Effective regulation of iron acquisition in graminaceous plants. The role
of mugineic acids as phytosiderophores. Physiol Planta 97:609–617
Ma CY, Logan TJ, Traina SJ et al (1995) Lead immobilization from aqueous solutions and
contaminated soils using phosphate rocks. Environ Sci Technol 29:1118–l126
Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in
environmental remediation. Biotechnol Adv 18:23–34
Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated
soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci
Technol 39:622–654
Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:
551–565
McCutcheon SC, Schnoor JL (2003) Phytoremediation–transformation and control of
contaminants. Wiley, Hoboken, NJ
Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant
Biol 3:153–162
Mench MJ, Didier VL, Lofler M, Gomez A, Masson P (1994) A mimicked in-situ remediation study
of metal-contaminated soils with emphasis on cadmium and lead. J Environ Qual 23: 58–63
Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi
caerulescens as a model system. Ann Bot 102:3–13