Page 28 - Plant-Based Remediation Processes
P. 28
1 Phytoremediation Protocols: An Overview 15
Dushenkov V, Kumar NPBA, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove
heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245
Dushenkov S, Kapulnik Y, Blaylock M, Sorochisky B, Raskin I, Ensley B (1997)
Phytoremediation: a novel approach to an old problem. In: Wise DL (ed) Global environmental
biotechnology. Elsevier, Amsterdam, pp 563–572
Dushenkov S, Skarzhinskaya M, Glimelius K, Gleba D, Raskin I (2002) Bioengineering of a
phytoremediation plant by means of somatic hybridization. Int J Phytoremediation 4:117–126
Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of
uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor.
Environ Res 91:127–133
Eapen S, Singh S, D’Souza S (2007) Advances in development of transgenic plants for remedia-
tion of xenobiotic pollutants. Biotechnol Adv 25:42–451
Ernst WHO (2005) Phytoextraction of mine wastes-options and impossibilities. Chem Erde 65:
29–42
Flocco CG, Lindblom SD, Smits EA (2004) Overexpression of enzymes involved in glutathione
synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation
6:289–304
Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ
Manage 92:407–418
Fulekar MH, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing
phytoremediation of heavy metals. Afr J Biotechnol 8:529–535
Garbisu C, Hernandez-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a
technology using green plants to remove contaminants from polluted areas. Rev Environ
Health 7:173–188
Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R (2003) A plant genetically
modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys
Res Commun 303:440–445
Gleba D, Gleba Y, Skarzhinskaya M, Glimelius K, Raskin I (1998) Transfer of resistance to heavy
metals from Thlaspi to Brassica by asymmetric hybridization, Abstract of IXth international
congress on plant tissue culture, Jerusalem
Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S,
Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular
farming. Proc Nat Acad Sci USA 96:5973–5977
Guo J, Dai X, Xu W, Ma M (2008) Overexpressing gsh1 and AsPCS1 simultaneously increases the
tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere
72:1020–1026
Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetox-
ification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:
1168–1172
Heaton ACP, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Toward detoxifying mercury
polluted aquatic sediments with rice genetically engineered for mercury resistance.
Environ Toxicol Chem 22:2940–1147
Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-
binding peptides. J Biosci Bioeng 100:593–599
James BR (1996) The challenge of remediating chromium contaminated soils. Environ Sci
Technol 30:248–251
Jansen M, Hill L, Thorneleye RA (2004) A novel stress-acclimation response in Spirodela
punctata (Lemna-ceae): 2,4,6 trichlorophenol triggers an increase in the level of an extracellu-
lar peroxidase, capable of the oxidative dechlorination of this xenobiotic pollutant. Plant Cell
Environ 27:603–613
January MC, Cutright TJ, Van Keulen H, Wei R (2008) Hydroponic phytoremediation of Cd, Cr,
Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere
70:531–537
Javaid A (2011) Importance of arbuscular mycorrhizal fungi in phytoremediation of heavy metal
contaminated soils. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-
contaminated soils. Springer, New York