Page 294 - Plant-Based Remediation Processes
P. 294

288                                                  G. Petruzzelli et al.

            Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineering
              phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N,
              Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL
            Milla ´n R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sa ´nchez DM, Cardona AI, Ferna ´ndez M,
              Vera R (2006) Mercury content in vegetation and soils of the Almade ´n mining area (Spain). Sci
              Total Environ 368:79–87
            Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2004) Phytoremediation of mercury-
              contaminated mine tailings by induced plant-mercury accumulation. Environ Practices
              6:165–175
            Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghomshei M, Meech JA (2005) Induced
              plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic
              acid. New Phytol 166:445–454
            NRC National Research Council (2002) Bioavailability of contaminants in soils and sediments:
              processes, tools and applications. National Academies, Washington, DC
            Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2009) Strategies to use phytoextraction in very
              acidic soil contaminated by heavy metals. Chemosphere 75:808–814
            Pedron F, Petruzzelli G, Tassi E, Brignocchi S, Barbafieri M (2010) Simultaneous Pb and As
              assisted-phytoextraction from a contaminated Industrial soil theme. In: Conference on
              ConSoil, Vienna, 1:8
            Pedron F, Petruzzelli G, Barbafieri M, Tassi E, Ambrosini P, Patata L (2011) Mercury mobiliza-
              tion in a contaminated industrial soil for phytoremediation. Commun Soil Sci Plant Anal
              42:2767–2777
            Petruzzelli G, Pedron F (2006) “Bioavailability” at heavy metal contaminated sites: a tool to select
              remediation strategies. International Conference on Remediation of contaminated sites. Rome
            Petruzzelli G, Pezzarossa B (2003) Ionic strength influence on heavy metal sorption processes by
              soil. J Phys IV 107:1061–1064
            Petruzzelli G, Pedron F, Gorini F, Pezzarossa B, Tassi E, Barbafieri M (2011) Bioavailability to
              evaluate phytoextraction applicability. Water Air 42:12–17 (in Italian)
            Petruzzelli G, Pedron F, Barbafieri M, Tassi E, Gorini F, Rosellini I (2012) Enhanced bioavailable
              contaminant stripping: a case study of Hg contaminated soil. Chem Eng Trans 28:211–216
            Pezzarossa B, Petruzzelli G (2001) Selenium contamination in soil: sorption and desorption
              processes. In: Selim MH, Sparks DL (eds) Heavy metals release in soils. CRC, Boca Raton, FL
            Robinson BH, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T (2006)
              Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc
              Res 80:221–234
            Santos FS, Hernandez-Allica J, Becerril JM, Amaral-Sobrinho N, MazurN GC (2006) Chelate
              induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere
              65:43–50
            Shelmerdine PA, Black CR, McGrath SP, Young SD (2009) Modeling phytoremediation by the
              hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environ
              Pollut 157:1589–1596
            Sparks DL (1998) Methods of soil analysis, Part 3. Chemical methods, Soil Science Society of
              America Book Series. Soil Science Society of America, Madison, WI
            USEPA (2008a) Assessing relative bioavailability in soil at superfund sites. http://www.epa.gov/
              superfund/health/contaminants/bioavailability/index.htm
            USEPA (2008b) Green remediation: incorporating sustainable environmental practice into reme-
              diation of contaminated sites. EPA542-R08-002:1–42
            Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how
              far from practice? Environ Pollut 150:34–40
            Vetterlein D, Szegedi K, Ackermann J, Mattusch J, Neue HU, Tanneberg H, Jahn R (2007)
              Competitive of phosphate and arsenate associated with geothite by root activity. J Environ
              Qual 36:1811–1820
   289   290   291   292   293   294   295   296   297   298   299