Page 204 - Plastics Engineering
P. 204

Mechanical Behaviour of  Composites                            187

               where
                        -    1
                          11 - -[E1cos4e+ E2sin48+ (2u12E2 +4A.G12)cos’Osin28]
                            -A.
                  -           1
                      = Q12 = -[u12E2(cos4 6 + sin4 e)
                              A.
                                + (El + E2 - 4A.GI2)cos2 8 sin’ e]
                  -           1    3
                      = & = -[cos  esine(E1 - u1&   - 2hG12)
                              A.
                                - cos 8 sin3 O(E2 -   -  2A.Gd1
                        -    1
                         22 - -[E2 cos4 8 + El sin4 8 + sin’ 8cos’ O(2ulzE2 + 4A.G12)]
                            -A.
                  -           1
                      = a26 = -[cosesin3 O(E1 - u12E2 - 2A.G12)1
                              A.
                                - cos3 8 sin @(E2 -   - 2A.G12)]
                        -    1
                        QM = -[sin2 8cos’ O(E1 + E2 - 2u12E2 - 2A.Gd1
                              A.
                                + A.G12(cos4 8 + sin4 e)]


               in which A.  = (1 - ~12~21) and u12E2  = u21E1.
                 By a similar analysis it may be shown that, for applied stresses (rather than
               applied strains) in the global directions, the overall compliance matrix [SI has


                                                                            (3.25)




















               from which, using the earlier terms from the on-axis lamina stiffness matrix [SI,
   199   200   201   202   203   204   205   206   207   208   209