Page 596 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 596

Hybrid materials based on polymer nanocomposites for environmental applications  549

           [100] Chandra V, Kim KS. Highly selective adsorption of Hg 2+  by a polypyrrole–reduced
                graphene oxide composite. Chem Commun 2011;47:3942–4.
           [101] Chen Y, Chen L, Bai H, Li L. Graphene oxide–chitosan composite hydrogels as broad-
                spectrum adsorbents for water purification. J Mater Chem A 2013;1:1992–2001.
           [102] Guo XJ, Chen FH. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide
                from groundwater. Environ Sci Technol 2005;39:6808–18.
           [103] Abou-El-Sherbini KS, Hassanien MM. Study of organically-modified montmorillonite
                clay for the removal of copper (II). J Hazard Mater 2010;184:654–61.
           [104] Pereir FAR, Sous KS, Cavalcanti GRS, Fonsec MG, de-Souz AG, Alves APM. Chitosan-
                montmorillonite biocomposite as an adsorbent for copper (II) cations from aqueous solu-
                tions. Int J Biol Macromol 2013;61:471–8.
           [105] Arvand M, Pakseresht MA. Cadmium adsorption on modified chitosan coated bentonite:
                batch experimental studies. J Chem Technol Biotechnol 2012;88:572–8.
           [106] Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, et al. Elec-
                troluminescence in conjugated polymers. Nature 1999;397:121–8.
           [107] Saunders BR, Turner ML. Nanoparticle-polymer photovoltaic cells. Adv Colloid Interf
                Sci 2008;138:1–23.
           [108] Carter SA, Scott JC, Brock PJ. Enhanced luminance in polymer composite light emitting
                devices. Appl Phys Lett 1997;71:1145–7.
           [109] Ton-That C, Philips MR, Nguyen TP. Blue shift in the luminescence spectrum of MEH-
                PPV films containing ZnO nanoparticles. J Lumin 2008;128:2031–4.
           [110] Su YW, Lin WH, Hsu YJ, Wei KH. Conjugated polymer/nanocrystal nanocomposites for
                renewable  energy  applications  in  photovoltaics  and  photocatalysis.  Small
                2014;10:4427–42.
           [111] Huynh WU, Dittmer JJ, Alivisatos AP. Hybrid nanorod-polymer solar cells. Science
                2002;295:2425–7.
           [112] Stylianakis MM. A facile, covalent modification of single-wall carbon nanotubes by thio-
                phene for use in organic photovoltaic cells. Sol Energy Mater Sol Cells 2010;94:267–74.
           [113] Jeltsch KF, Schadel M, Bonekamp JB, Niyamakom P, Rauscher F, Lademann HWA,
                et al. Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods.
                Adv Funct Mater 2012;22:397–404.
           [114] Gonzalez-Valls I, Lira-Cantu M. Vertically-aligned nanostructures of ZnO for excitonic
                solar cells: a review. Energy Environ Sci 2009;2:19–34.
           [115] Wu F, Cui Q, Qiu Z, Liu C, Zhang H, Shen W, et al. Improved open-circuit voltage in
                polymer/oxide-nanoarray hybrid solar cells by formation of homogeneous metal oxide
                core/shell structures. ACS Appl Mater Interfaces 2013;5:3246–54.
           [116] Park NG. Perovskite solar cells: an emerging photovoltaic technology. Mater Today
                2016;18:65–72.
           [117] Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev
                2014;114:11503–618.
           [118] Park KI, Song HM, Kim Y, Mho SI, Cho WI, Yeo IH. Preparation and characterization of
                V 2 O 5 /polyaniline composite film cathodes for Li battery. Electrochim Acta
                2010;55:8023–9.
           [119] Shi JY, Yi CW, Kim K. An investigation of LiFePO 4 /Poly(3,4-ethylenedioxythiophene)
                composite cathode materials for lithium-ion batteries. Bull Kor Chem Soc
                2010;31:2698–700.
           [120] Chen WM, Qie L, Yuan LX, Xi SA, Hu XL, Zhang WX, et al. Insight into the improve-
                ment of rate capability and cyclability in LiFePO 4 /polyaniline composite cathode. Elec-
                trochim Acta 2011;56:2689–95.
   591   592   593   594   595   596   597   598   599   600   601