Page 591 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 591
544 Polymer-based Nanocomposites for Energy and Environmental Applications
[8] Yang SH, Le Rendu P, Nguyen TP, Hsu CS. Fabrication of MEH-PPV/SiO 2 and MEH-
PPV/TiO 2 nanocomposites with enhanced luminescent stabilities. Rev Adv Mater Sci
2007;15:144–9.
[9] Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y, et al. A nanocomposite ultraviolet pho-
todetector based on interfacial trap-controlled charge injection. Nat Nanotechnol
2012;7:798–802.
[10] Zou JP, Le Rendu P, Musa I, Yang SH, Dan Y, Ton-That C, et al. Investigation of the
optical properties of polyfluorene/ZnO nanocomposites. Thin Solid Films 2011;
519:3997–4003.
[11] Shen PC, Lin MS, Lin CF. Environmentally benign technology for efficient warm-white
light emission. Sci Rep 2014;4:5307.
[12] Li F, Shi Y, Yuan K, Chen Y. Fine dispersion and self-assembly of ZnO nanoparticles
driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance.
New J Chem 2013;37:195–203.
[13] Dkhil SB, Gaceur M, Dachraoui W, Hannani D, Fall S, Brunel F, et al. P-type semicon-
ductor surfactant modified zinc oxide nanorods for hybrid bulk heterojunction solar cells.
Sol Energy Mater Sol Cells 2017;159:608–16.
[14] Shih CC, Lee WY, Chiu YC, Hsu HW, Chang HC, Liu CL, et al. High performance trans-
parent transistor memory devices using nano-floating gate of polymer/ZnO
nanocomposites. Sci Rep 2016;6:20129.
[15] Beek WJE, Slooff LH, Wienk MM, Kroon JM, Janssen RAJ. Hybrid solar cells using a
zinc oxide precursor and a conjugated polymer. Adv Funct Mater 2005;15:1703–7.
[16] Rittigstein P, Torkelson JM. Polymer–nanoparticle interfacial interactions in polymer
nanocomposites: confinement effects on glass transition temperature and suppression
of physical aging. J Polym Sci B Polym Phys 2006;44:2935–43.
[17] Zhang H, Fu Q, Zeng W, Ma D. High-efficiency fluorescent organic light-emitting diodes
with MoO 3 and PEDOT:PSS composition film as a hole injection layer. J Mater Chem C
2014;2:9620–4.
[18] Wang Y, Luo Q, Wu N, Wang Q, Zhu H, Chen L, et al. Solution-processed MoO 3 :PEDOT:
PSS hybrid hole transporting layer for inverted polymer solar cells. ACS Appl Mater
Interfaces 2015;7:7170–9.
[19] Wang L, Liu Y, Jiang X, Qin D, Cao Y. Enhancement of photovoltaic characteristics using
a suitable solvent in hybrid polymer/multiarmed CdS nanorods solar cells. J Phys Chem C
2007;111:9538–42.
[20] Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA. Nanostructured hybrid
polymer-inorganic solar cell active layers formed by controllable in situ growth of semi-
conducting sulfide networks. Nano Lett 2010;10:1253–8.
[21] Dowland S, Lutz T, Ward A, King SP, Sudlow A, Hill MS, et al. Direct growth of metal
sulfi de nanoparticle networks in solid-state polymer films for hybrid inorganic-organic
solar cells. Adv Mater 2011;23:2739–44.
[22] Huynh WU, Dittmer JJ, Libby WC, Whittng GL, Alivisatos AP. Controlling the mor-
phology of nanocrystal-polymer composites for solar cells. Adv Funct Mater 2003;
13:73–9.
[23] Lee CW, Renaud C, Hsu CS, Nguyen TP. Traps and performance of MEH-PPV/CdSe
(ZnS) nanocomposite-based organic light-emitting diodes. Nanotechnology 2008;
19:455202.
[24] Li Z, Gao F, Greenham NC, McNeill CR. Comparison of the operation of polymer/
fullerene, polymer/polymer, and polymer/nanocrystal solar cells: a transient photocurrent
and photovoltage study. Adv Funct Mater 2011;21:1419–31.

