Page 683 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 683

628                Polymer-based Nanocomposites for Energy and Environmental Applications

         polymers have been utilized ranging from thermoplastic starch, PLA, cellulose,
         chitosan, gelatin, etc. The biopolymer nanocomposites have been extensively used
         in various applications such as for the packaging of food, in biomedical science,
         and in tissue engineering. Smart and hygienic packaging materials have been
         produced to reduce the waste generation and enhance the shelf life of food products.



         References

          [1] Satyanarayana KG, Gregorio GCA, Fernando W. Biodegradable composites based on lig-
             nocellulosic fibers—an overview. Prog Polym Sci 2009;34:982–1021.
          [2] Leja K, Lewandowicz G. Polymer biodegradation and biodegradable polymers—a review.
             Polish J Environ Stud 2010;19:255–66.
          [3] Drzal LT. Sustainable biodegradable green nanocomposites from bacterial bio plastic for
             automotive  applications.  http://http/www.egr.msu.edu/cmsc/biomaterials/index.html
             [accessed 20.08.10].
          [4] Sinha SR, Bousmina M. Biodegradable polymer/layered silicate nanocomposites. In:
             Mai Y, Yu Z, editors. Polymer nanocomposites. Cambridge, England: Woodhead Publish-
             ing and Maney Publishing; 2006. p. 57–129.
          [5] Pandey JK, Chu WS, Lee CS, Ahn SH. Preparation characterization and performance
             evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix
             for automotive applications. International symposium on polymers and the environment:
             emerging technology and science, BioEnvironmental Polymer Society (BEPS), Vancou-
             ver, WA, USA, 17–20 October; 2007.
          [6] Mittal V. Polymer layered silicate nanocomposites: a review. Materials 2009;2:992–1057.
          [7] Mittal V. Mittal V, editor. Optimization of polymer nanocomposite properties. Weinheim:
             Wiley VCH Verlag GmbH & Co. KGaA; 2010. p. 1–19.
          [8] Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation
             to processing. Prog Polym Sci 2003;25:1539–641.
          [9] Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog
             Polym Sci 2008;33:1119–98.
         [10] Abedi S, Abdouss M. A review of clay-supported Ziegler-Natta catalysts for production of
             polyolefin/clay nanocomposites through in situ polymerization. Appl Catal A Gen
             2014;475:386–409.
         [11] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties
             and uses of a new class of materials. Mater Sci Eng 2000;28:1–63.
         [12] Alig I, Potschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, et al. Establishment,
             morphology and properties of carbon nanotube networks in polymer melts. Polymer
             2012;53:4–28.
         [13] Chen J, Qiao J, Liu H-L, Yin W-Y, Fu G-C, Zhang Q-F. A facile approach to polymer/clay
             nanocomposite by in situ redox polymerization. Curr Nanosci 2011;7(4):552–5.
         [14] Zhu L, Liu P, Wang A. High clay-content attapulgite/poly(acrylic acid) nanocomposite
             hydrogel  via  surface-initiated  redox  radical  polymerization  with  modified
             attapulgitenanorods as initiator and cross-linker. Ind Eng Chem Res 2014;53(5):2067–71.
         [15] Chen L, Wang C, Li Q, Yang S, Hou L, Chen S. In situ synthesis of transparent fluorescent
             ZnS-polymer nanocomposite hybrids through catalytic chain transfer polymerization
             technique. J Mater Sci 2009;44(13):3413–9.
   678   679   680   681   682   683   684   685   686   687   688