Page 114 - Principles and Applications of NanoMEMS Physics
P. 114

102                                                      Chapter 3


                                  2
               v =  v  1+  V 4  + V − V 2 2  ,                                                              (66)
                                  4
                    F      v π   4π 2  2
                             F       v F
             and

                     1+ V 2π v −  V 2π  v
               g =       4     F   2     F  .                                                          (67)
                     1+ V 2π v +  V 2π  v
                         4     F   2     F

             Kane and Fisher [140] interpret v in the case V  = V  >  0 , as the plasmon
                                                      4    2
             velocity, which increases above  v  when the repulsive interactions reduce
                                           F
             the compressibility of the electron gas.

               When the  electron  spin is included  in the Hamiltonian, the interaction
             becomes,
                                             ~
                       ~
               V (x −  ' x ) ( ) ( ) 'xx ρρ  ~  Ÿ  V σσ ' (x −  ' x  ) ( ) ( ) 'xx ρρ σ  ~  ' σ  .                                (68)
             In this case, the kinetic energy part of the Hamiltonian may be written as
             follows [133].

             H    = v  F ¦  ( ( k −  k  )c +  c  +  ( k −−  k  )c  +  c  )
               kin                F   +  k ,  s ,  +  k ,  s ,  F  −  k ,  s ,  −  k ,  s ,
                        k  s ,
                    2π v                                               ,     (69)
                  =      F   ¦   ρ   () q ρ  ( q−  )
                       L   q> ,0 α = ±  s ,  α  s ,  α  s ,
             where the substitution,

               ρ ± s ,  () =q  ¦ + k,,  s c + k, ,                                                             (70)
                                +
                              c
                                        s
                                      ,
                            k
             representing density operators for spin projections  =↑,s  ↓  has been made.
             The  potential  energy,  in turn,  contains two types of  interaction,  namely,
             backward scattering and   for ward   scattering.  The  backward  scattering
             Hamiltonian is given by,


               H       =  1   ¦   g  c  +  c    c           c
                                                    +
                                                                −
                  int_  1           1   k , +  s ,  k , +  t ,  , +  p 2  k F + q  t ,  , −  k 2 k F − q  s , ,   (71)
                          L  k  p ,  q ,  s ,  t ,
   109   110   111   112   113   114   115   116   117   118   119