Page 234 - Principles and Applications of NanoMEMS Physics
P. 234

224                                                    Appendix A


             and may be expressed in second-quantization noation as,
                                               +
                                                         +
             1 ρ 1 σ  V 11 τ  ν  =  1  ¦  αβ v  γδ 0  a σ a ρ a α a + β a δ a γ a τ + a 0
                                                         ν
                          2 αβγδ
                        =  1  ¦  αβ v  γδ  ( [δ  δ  ± δ  δ  )(δ  δ  ± δ  δ  )]
                          2  αβγδ        αρ  βσ  ασ  βρ  αρ  βσ  ασ  βρ  .  (A.49b)

                        =  1  [ ρσ v τν +  σρ v ντ ± ( σρ v τν +  ρσ v ντ )]
                          2
                        =  ρσ v τν ±  ρσ v ντ




             A.5.1 Field Operators

               A common practice in the application of the number  representation
             formalism in interacting (many-body) systems is to express the Hamiltonians
             in terms of so-called field operators, () x  and ψ +  () x , which are defined
                                             ψ
             by,

               ψ () =x  ¦ φ i  ()cx  i  ,                                                                            (A.50)
                       i
             and
               ψ +  () =x  ¦ φ * i  ()cx  i +  .                                                                       (A.51)
                        i
             The field operators obey the commutation relations,
                                                      ′
               { ψ () ( )}=xx  ,ψ  ′  ¦ φ i ( ) () ′ ccxx φ j  i  j  +  ¦ φ j () ( ) ccxx φ i  j  i
                             i  , j             i , j
                                                                ,              (A.52)
                           =  ¦ φ i () ( ){ ,ccxx φ j  ′  i  j } 0=
                              i , j
                         x′
                                               +
               { ψ () x ψ ,  + ( )}= ¦ φ i ( ) () ccxx φ * j  ′  i  + j ¦ φ * j  () ( ) ccxx′ φ i  * j  i
                               i,  j             i,  j
                           =  ¦ φ i () ( ){ ccxx φ * j  ′  i  ,  + j  }= 0  ,           (A.53)
                              i, j
                           =  ¦ φ i () ( ) = δφ i *  x′  (x −  x′ )
                                   x
                              i
   229   230   231   232   233   234   235   236   237   238   239