Page 264 - Principles and Applications of NanoMEMS Physics
P. 264
254
Lithography, 6, 22, 24, 38 Schrödinger, 45, 47, 49, 50, 91,
Lüttinger Liquids, 90, 100 115, 126, 127, 213, 214, 215
Metallic, 109, 201, 203 SCREAM, 16, 21
Molecular Beam Epitaxy, 27 Signal Processing, 152
Nanoelectronics, 2, 149 Single-Electron Tunneling, 56
Nanomanipulation, 37, 38 SNOM, 209, 210
NanoMEMS Origins, 1 Solid-State Qubit, 178
Nanoparticle, 38, 202, 206 Spin-Casting, 4
Nanophotonics, 197, 208 spinon, 103, 104, 247
Negative Refraction, 142 Sputtering, 15, 21
Noise, 158 Squeezing, 158
NSOM, 208, 209 Superconducting-Based Qubits,
Nuclear Magnetic Resonance, 166 183
Optical lithography, 6, 8 Superconductivity, 121
Parametric Amplification, 155 Superconductors, 112
PBC, 134, 135, 137, 138, 139, Superfluidity, 113
140, 141, 146, 147, 205, 206 Surface Micromachining, 16, 17
Phase Qubit, 190 Surface Plasmons, 194, 208
Photonic Band-Gap Crystals, 41, Switch, 52
134 Systems on Chip, 149
Photoresist, 8, 17 Teleportation, 73
Plasmonic Waveguides, 204 Tomonaga-Lutinger model, 242
Quantization, 80, 215, 218 Transmission Line, 48, 50
Quantized Heat Flow, 89 van der Waals, 33, 60, 61, 62, 77
Quantum Computing, 161 Wafer Patterning, 5
Quantum Dots, 56 X-ray lithography, 7, 9
Quantum Gates, 70
Quantum Information Theory, 66
Quantum Mechanics, 213
Quantum Point Contacts, 82
Quantum Transport, 89
quasi-particle, 91, 96, 97, 99, 100,
244
Qubit rotations, 173, 174
Resonant Tunneling, 84
Resonator, 52, 155
RF MEMS, 3, 149
Scanning Probe Microscopy, 29
Scanning Tunneling Microscope,
30