Page 260 - Principles and Applications of NanoMEMS Physics
P. 260

250


                       microresonator,” Appl. Phys. Lett., vol. 77, No. 10, 2000, pp. 1545-1547, 2000.
             [180] F.M. Serry, D. Walliser, and G.J. Maclay, “The Anharmonic Casimir Oscillator
                      (ACO)—The Casimir Effect in a Model Microelectromechanical System,” J.
                     Microelectromechanical Sys., vol. 4, 1995, p.193..
             [181] H.B. Chan, V.A. Aksyuk, R.N. Kleiman et al., “Nonlinear Micromechanical Casimir
                      Oscillator,” Phys. Rev. Lett. vol. 87, 2001, p.211801..
             [182] S. Blom, “Magnetomechanics of mesoscopic wires,” Low-Temp. Phys., vol. 26, no. 6,
                      2000, pp. 498-594.
             [183] E. Buks and M. Roukes, “Electrically tunable collective modes in a MEMS resonator
                       array,” J. Microelectromech. Syst., vol. 11,Dec. 2002,  pp. 802-807.
             [184] R. Lifshitz and M.C. Cross, “Response of parametrically-driven nonlinear coupled
                       oscillators with application to micro- and nanomechanical resonator arrays,” vol. pp.
                       2003, pp. 134302-134320.
             [185] H.J. De Los Santos, “Photonic bandgap crystal frequency multiplexers and pulse
                      blanking filter for use therewith,” U.S. Patent 5,749,057, May 5, 1998.
             [186] M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge, U.K.: Cambridge Univ.
                      Press (1997).
             [187] M. P. Blencowe and M. N. Wybourne, “Quantum squeezing of mechanical motion for
                       micron-sized cantilevers,” Physica B, vol. 280, 2000,  pp. 555-557.
             [188] I. Bargatin and M. L. Roukes, “Nanomechanical Laser: Amplification of Mechanical
                      Oscillations by Stimulated Zeeman Transitions,” Phys. Rev. Lett., Vol. 91, No. 13, 26
                       September 2003, pp. 138302-1 -138302-4
             [189] C. Bena, S. Vishveshwara, L. Balents et al., “Quantum Entanglement in
                      Carbon Nanotubes,” Phys. Rev. Lett., vol. 89, p.037901 (2002)
             [190] C. Monroe and D.J. Wineland, "Computing with atoms and molecules," Science
                      Spectra, vol. 23,  2000, pp. 72-79.
             [191] Cirac, J. I., Zoller, P., “Quantum computation with cold, trapped ions,” Phys. Rev.
                      Lett. 74, 1995, 4091–4094.
             [192] D. J. Wineland, M. Barrett, J. Britton et al., "Quantum information processing with
                       trapped ions," Phil. Trans. Royal Soc. London A vol. 361, 2003,  pp. 1349-1361.
             [193] R. Laflamme, E. Knill, D. G. Cory, et al., “ Introduction to NMR Quantum Information
                      Processing,” Online Version: http://xxx.lanl.gov/pdf/ arXiv:quant-ph/0207172
             [194] L. M.K. Vandersypen and I. L. Chuang, “NMR Techniques for Quantum Control and
                      Computation,” Online Version: http://xxx.lanl.gov/pdf/ quant-ph/0404064
             [195] M. Steffen, L. M.K. Vandersypen, and I. L. Chuang, “ Toward Quantum Computation:
                      A Five-Qubit Quantum Processor,”  IEEE Micro, April 2001, pp. 24-34.
             [196] E. M. Purcell, H. C. Torrey, and R. V. Pound. Resonance absorption by nuclear
                      magnetic moment in a solid. Phys. Rev., vol. 69, 1946, pp. 37–38.
             [197] F. Bloch, “Nuclear induction,” Phys. Rev., vol. 70, 1946 pp. 460–485.
             [198] R. R. Ernst, G. Bodenhausen, and A. Wokaun. Principles of Nuclear Magnetic
                      Resonance in One and Two Dimensions. Oxford University Press, Oxford (1994).
             [199] P. Mansfield and P. Morris, “NMR imaging in medicine,” Adv. Mag. Res., 1982, S2:1–
                      343.
   255   256   257   258   259   260   261   262   263   264