Page 256 - Principles and Applications of NanoMEMS Physics
P. 256

246


                     pp. 041804.
             [96] J. Schwinger, L.L. De Radd, Jt., and K.A. Milton, ”Casimir effect in dielectrics,” Ann.
                    Phys. (NY) vol. 115, 1978, p.1.
             [97] V.B. Bezerra, G.L. Klimchitskaya, and C. Romero, Casimir force between a flat plate
                     and a spherical lens: Application to the results of a new experiment,” Mod. Phys. Lett.,
                A12, 1997, p. 2613.
             [98] E.M. Lifshitz, The theory of molecular attractive forces between solids,” Sov. Phys.
                    JETP vol 2, 1956, p. 73.
             [99] J. Blocki, J. Randrup, W.J. Swiatecki and C.F. Tsang, “Proximity forces,” Ann. Phys.
                    (N.Y.) vol. 105, 1977, p. 427.
             [100] T.P. Spiller, “Quantum Information Processing: Cryptography, Computation, and
                     Teleportation,” Proc. IEEE, vol. 84, No. 12, Dec. 1996, pp. 1719-1746.
             [101] A. Barenco, "Quantum physics and computers," Contemporary Physics, vol. 37, 1996,
                      pp.375-89
             [102] A.M. Steane, “Quantum Computing”, Rept. Prog. Phys. vol. 61, 1998, pp. 117-173.
             [103] B. Schumacher, “Quantum coding,” Phys. Rev. A 51, 1995, pp. 2738–2747.
             [104] D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum
                      computer,” Proc. Roy. Soc. Lond. A vol. 400,  1985, pp. 97-117.
             [105] D. Deutsch, “Quantum computational networks,”  Proc. Roy. Soc. Lond. A vol. 425,
                      1989, pp. 73-90.
             [106] C.H. Bennet, G. Brassard, C. Crepeau et al, “Teleporting an Unknown Quantum State
                      via Dual Classical and Einstein-Podolsky-Rosen Channels,”  Phys. Rev. Letts, vol. 70,
                      29 March 1993, pp. 1895-1899.
             [107] Kwiat, P., H. Weinfurter, T. Herzog et al. 1995, Phys. Rev. Lett. vol. 74,  p. 4763.
             [108] C.H. Bennett, “Quantum Information and Computation,” Physics Today, Oct. 1995, pp.
                      24-30.
             [109] V. Vedral and M.B. Plenio, “Basics of Quantum Computation,” Prog. Quant. Electron
                      vol. 22, 1998, pp.1-39.
             [110] J. Preskill, “Quantum computingL pro and con,” Proc. R. Soc. Lond. A, vol. 454, 1998,
                      pp. 469-86.
             [111] M. A. Nielsen and I. L. Chuang Quantum Computation and Quantum Information,
                      Cambridge (2000).
             [112] D. Vion, A. Aassime, A. Cottet et al., “Manipulating the Quantum State of an Electrical
                      Circuit, Science vol. 296, 3 May 2002, pp. 886-889.
             [113] R. Landauer, “Spatial Variation of Currents and Fields Due to Localized Scatterers in
                      Metallic Conduction,” IBM J. Res. Dev., vol. 1, 1957,  pp. 223-231.
             [114] B. J. van Wees et al. “Quantised conductance of point contacts in a two dimensional
                      electron gas,” Phys. Rev. Lett. vol. 60, 1988, pp. 848-850.
             [115] A. Szafer and A. D. Stone, “Theory of Quantum Conduction through a Constriction,”
                 Phys. Rev. Letts., vol. 62, No. 3, 1989,  pp. 300-303.
             [116] L.L. Chang, L. Esaki, and R. Tsu, “Resonant tunneling in semiconductor double-
                      barriers,” Appl. Phys. Lett., Vol. 24, 1974, pp. 593.
             [117] D.K. Roy, Quantum Mechanical Tunnelling and Its Applications, Singapore: World
                      Scientific (1986).
   251   252   253   254   255   256   257   258   259   260   261