Page 257 - Principles and Applications of NanoMEMS Physics
P. 257
References 247
[118] F. Capasso and G. Margaritondo (Editors), Heterojunction Band Discontinuities:
Physics and Device Applications, Amsterdam: North-Holland (1987).
[119] H. Mizuta and T. Tanoue, The Physics and Applications of Resonant Tunneling Diodes,
Cambridge, UK: Cambridge University Press (1995).
[120] D. H. Chow, J. N. Schulman, E. Ozbayet et al., “1.7-ps microwave integrated circuit-
compatible InAs/AlSb resonant tunneling diodes,” Appl. Phys. Lett. vol. 61, 1992, pp.
1685-1687.
[121] D.D. Coon and H.C. Liu, “Tunneling currents and two-body effects in quantum well
and superlattice structures,” App. Phys. Letts., vol. 47, No. 2, 1984, pp. 172-174.
[122] R. Lake and S. Datta, “Nonequilibrium Green’s-function method applied to double-
barrier resonant-tunneling diodes,” Phys. Rev. B, vol. 45, No. 12, 1992, pp. 6670-6685.
[123] W.-R. Liou and P. Roblin, “High Frequency Simulation of Resonant Tunneling
Diodes,” IEEE Trans. Electron Dev., Vol. 41, No. 7, 1994, pp. 1098-1111..
[124] J.N. Schulman, "Ga 1-x Al x As-Ga 1-y Al y As-GaAs double-barrier structures," J. of Appl.
Phys. vol. 60, 1986, pp. 3954-3958.
[125] Y. Aharonov and D. Bohm, “Significance of Electromagnetic Potentials in Quantum
Theory,” Phys. Rev. Second Series, vol. 115, No. 3, 1959, pp. 485-491
[126] R.E. Peierls, Quantum Theory of Solids, Oxford: Clarendon Press (1955).
[127] L.G.C. Rego and G. Kirczenow, “Quantized thermal conductance of dielectric quantum
wires,” Physical Review Letters, Volume 81, Issue 1, July 6, 1998, pp. 232-235
[128] K. Schwab, E.A. Henriksen, J.M. Worlock et al., “Measurement of the Quantum of
Thermal Conductance,” Nature, vol. 404, 2002, pp.974-977.
[129] D.E. Angelescu, M.C. Cross, and M.L. Roukes, "Heat Transport in Mesoscopic
Systems", Superlattices and Microstructures vol. 23, 1998, p.673.
[130] D.G. Cahill, W.K. Ford, K.E. Goodson et al., “Nanoscale Thermal Transport,” to
appear in Applied Phys. Rev., J. Appl. Phys. vol. 93, 2002, p. 1.
[131] A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinskii, Methods of Quantum Field
Theory in Statistical Physics,” New York, N.Y.: Dover Publications (1963)
[132] S. Rodriguez, “Electron Theory of Solids,” Course Notes, Dept. of Physics, Purdue
University, 1987-88.
[133] H.J. Schulz, “Fermi liquids and non–Fermi liquids,” Online Version:
http:// xxx.lanl.gov cond-mat/9503150
[134] A. J. Schofield, “Non-Fermi liquids.” Contemporary Physics, vol. 50, No. 2, 1999, pp.
95-115.
[135] R. Melin, B. Doucot, and P. Butaud, “Breakdown of the Fermi liquid picture in one
dimensional fermion systems: connection with the energy level statistics,” Journal de
Physique I, vol. 4, No. 5, May 1994, p.737.
[136] M. Horsdal, Interacting electrons in one dimension: The Luttinger model and the
quantum Hall effect, Ph.D. Dissertation, Department of Phyiscs,University of Oslo, May
2003.
[137] F.D.M. Haldane, "Properties of the Luttinger model and their extension to the general
1D interacting spinless Fermi Gas," J. Phys.C: Solid State Phys., vol. 14, 1981, 2585.
[138] K. Schönhammer, “Lüttinger Liquids: The Basic Concepts,” OnlineVersion:
http://cond- mat/0305035
[139] J. von Delft and H. Schoeller, “Bosonization for Beginners — Refermionization for
Experts,” Annalen der Physik, vol. 4, 1998, pp. 225-305.