Page 253 - Principles and Applications of NanoMEMS Physics
P. 253

References                                                   243


                    crystal silicon process for microelectromechanical structures,” Sensons and Actuators A
                     40 (1994), pp. 210-213.
             [34] G. M. Whitesides and J. C. Love, “The Art of Building Small,” Scientific American,
                     Sept. 2001, pp. 39-47.
             [35] S.M. Sze, Physics of Semiconductor Devices, New York: John Wiley & Sons (1981).
             [36] F. Capasso and G. Margaritondo, Editors, Heterojunction Band Discontinuities: Physics
                    and Device Applications, Amsterdam: North-Holland (1987).
             [37] S.L. Chuang, Physics of Optoelectronic Devices, New York: John Wiley & Sons (1995).
             [38] [Online]: http://www.veeco.com/learning/learning_molecularbeam.asp
             [39] H.J. De Los Santos, et al. "Electron Transport Mechanisms in Abrupt- and Graded-
                    Base/Collector AlInAs/GaInAs/InP  DHBTs," Int. Symp.Compound Semicond, Inst. Phys.
                    Conf. Ser. No. 141: Chapter 6, 1995, pp. 645-650.
             [40] H.J. De Los Santos, et al., "DHBT/RTD-Based Active Frequency Multiplier for Wireless
                    Communications," 1997 IEEE  Int. Symp. Compound Semicond, Chapter 7, pp. 515-518,
                     1998.
             [41] F. J. Giessibl, “Advances in atomic force microscopy,”  Review of Modern Physics ,vol.
                75, 2003, p.949.
             [42] A. A. Baski, “Fabrication of Nanoscale Structures using STM and AFM,”  Advanced
                    Semiconductor and Organic Nano-techniques, Part 3 (edited by Morkoc),” Academic
                     Press (2002)
             [43] J. Israelachvili, Intermolecular and Surface Forces, 2nd ed. London: Academic Press,
                     (1991).
             [44] B.M. Law and F. Rieutord, “Electrostatic forces in atomic force microscopy”, Phys. Rev.
                    vol. B 66, 2002, pp. 035402–1–6.
             [45] L. Olsson, N. Lin, V. Yakimov et al, “A method for in situ characterization of tip shape
                    in ac-mode atomic force microscopy using electrostatic interaction”, J. Appl. Phys., vol.
                    84, 1998,  pp. 4060–4064.
             [46] P.J.F. Harris, Carbon Nanotubes and Related Structures, Cambridge University Press:
                    Cambrudge, UK (1999).
             [47] S. Li, Z Yu, G. Gadde et al., “Carbon Nanotube Growth for GHz Devices,” 2003 NANO
                    Conference, August, San Francisco, CA.
             [48] C. L. Cheung, J. H. Hafner, and C. M. Lieber, “Carbon nanotube atomic force
                     microscopy tips: Direct  growth by chemical vapor  deposition and application to high-
                     resolution imaging,” PNAS, April 11, 2000,  vol. 97  No. 8, p 3813.
             [49] A. Requicha, “ Nanorobots, NEMS and Nanoassembly,” Proc. IEEE, vol. 91,  No. 11,
                    November 2003, pp. 1922-1933.
             [50] S. Hong, J. Zhu, C.A. Mirkin, “Multiple Ink Nanolithography: Toward a Multiple-Pen
                    Nano-Plotter,” Science 283, 1999, p. 661.
             [51] E. Yablonovitch, Inhibited Spontaneous Emission in Solid State Physics and
                    Electronics,” Phys. Rev. Letts., Vol. 58, No. 20, 1987,  pp. 2059-2062.
             [52] H. J. De Los Santos, Introduction to Microelectromechanical (MEM) Microwave
                    Systems, Artech House: Norwood, MA (1999).
   248   249   250   251   252   253   254   255   256   257   258